Advertisement

Journal of Biomolecular NMR

, Volume 4, Issue 5, pp 727–734 | Cite as

A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium

  • Neil A. Farrow
  • Ouwen Zhang
  • Julie D. Forman-Kay
  • Lewis E. Kay
Short Communication

Summary

A heteronuclear correlation experiment is described which permits simultaneous characterization of both 15N longitudinal decay rates and slow conformational exchange rates. Data pertaining to the exchange between folded and unfolded forms of an SH3 domain is used to illustrate the technique. Because the unfolded form of the molecule, on average, shows significantly higher NH exchange rates than the folded form, and approach which minimizes the degree of water saturation is employed, enabling the extraction of accurate rate constants.

Key words

Protein dynamics Chemical exchange Protein folding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BaxA. and DavisD. (1985) J. Magn. Reson., 63, 207–213.Google Scholar
  2. BaxA. and PochapskyS. (1992) J. Magn. Reson., 99, 638–643.Google Scholar
  3. Bothner-ByA.A., StephensR.L., LeeJ., WarrenC.D. and JeanlozR.W. (1984) J. Am. Chem. Soc., 106, 811–813.Google Scholar
  4. BoydJ., HommelU. and CampbellI.D. (1990) Chem. Phys. Lett., 175, 477–482.CrossRefGoogle Scholar
  5. CavanaghJ., PalmerA.G., WrightP.E. and RanceM. (1991) J. Magn. Reson., 91, 429–435.Google Scholar
  6. ErnstR.R., BodenhausenG. and WokaunA. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, p. 492.Google Scholar
  7. ForsenS. and HoffmanR.A. (1963) J. Chem. Phys., 39, 2892–2901.Google Scholar
  8. GrzesiekS. and BaxA. (1993a) J. Am. Chem. Soc., 115, 12593–12594.Google Scholar
  9. GrzesiekS. and BaxA. (1993b) J. Biomol. NMR, 3, 185–204.PubMedGoogle Scholar
  10. GutowskyH.S., McCallD.W. and SlichterC.P. (1953) J. Chem. Phys., 21, 279–292.Google Scholar
  11. GutowskyH.S. and SaikaA. (1953) J. Chem. Phys., 21, 1688–1694.Google Scholar
  12. HahnE.L. and MaxwellD.E. (1952) Phys. Rev., 88, 1070–1084.CrossRefGoogle Scholar
  13. HullW.E. and SykesB.D. (1975) J. Chem. Phys., 63, 867–880.CrossRefGoogle Scholar
  14. JohnB.K., PlantD., WebbP. and HurdR.E. (1992) J. Magn. Reson., 98, 200–206.Google Scholar
  15. KamathU. and ShriverJ.W. (1989) J. Biol. Chem., 264, 5586–5592.PubMedGoogle Scholar
  16. KayL.E., TorchiaD.A. and BaxA. (1989) Biochemistry, 28, 8972–8979.PubMedGoogle Scholar
  17. KayL.E., NicholsonL.K., DelaglioF., BaxA. and TorchiaD.A. (1992) J. Magn. Reson., 97, 359–375.Google Scholar
  18. Kay, L.E., Xu, G.Y. and Yamazaki, T. (1994) J. Magn. Reson. Ser. A, in press.Google Scholar
  19. LoganT.M., OlejniczakE.T., XuR.X. and FesikS.W. (1993) J. Biomol. NMR, 3, 225–231.CrossRefPubMedGoogle Scholar
  20. MacuraS. and ErnstR.R. (1980) Mol. Phys., 41, 95–117.Google Scholar
  21. MarionD., IkuraM., TschudinR. and BaxA. (1989) J. Magn. Reson., 85, 393–399.Google Scholar
  22. McConnellH.M. (1958) J. Chem. Phys., 28, 430–431.Google Scholar
  23. McCoyM. and MuellerL. (1992) J. Am. Chem. Soc., 114, 2108–2112.Google Scholar
  24. MontelioneG.T. and WagnerG. (1989) J. Am. Chem. Soc., 111, 3096–3098.Google Scholar
  25. MorrisG.A. and FreemanR. (1979) J. Am. Chem. Soc., 101, 760–762.Google Scholar
  26. OttingG., LiepinshE. and WüthrichK. (1993) Biochemistry, 32, 3571–3582.PubMedGoogle Scholar
  27. PalmerIIIA.G., RanceM. and WrightP.E. (1991a) J. Am. Chem. Soc., 113, 4371–4380.Google Scholar
  28. PalmerIIIA.G., CavanaghJ., WrightP.E. and RanceM. (1991b) J. Magn. Reson., 93, 151–170.Google Scholar
  29. PalmerIIIA.G., SkeltonN.J., ChazinW.J., WrightP.E. and RanceM. (1992) Mol. Phys., 75, 699–711.Google Scholar
  30. PiottoM., SaudekV. and SklenarV. (1992) J. Biomol. NMR, 2, 661–665.PubMedGoogle Scholar
  31. ShakaA.J., KeelerJ., FrenkielT. and FreemanR. (1983) J. Magn. Reson., 52, 335–338.Google Scholar
  32. SklenarV., TorchiaD.A. and BaxA. (1987) J. Magn. Reson., 73, 375–379.Google Scholar
  33. SmallcombeS. (1993) J. Am. Chem. Soc., 15, 4776–4785.Google Scholar
  34. WiderG., NeriD. and WüthrichK. (1991) J. Biomol. NMR, 1, 93–98.Google Scholar
  35. Zhang, O. and Forman-Kay, J.D. (1994) Biochemistry, submitted for publication.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1994

Authors and Affiliations

  • Neil A. Farrow
    • 1
    • 2
    • 3
    • 4
  • Ouwen Zhang
    • 1
    • 2
    • 3
    • 4
    • 5
  • Julie D. Forman-Kay
    • 5
  • Lewis E. Kay
    • 1
    • 2
    • 3
    • 4
  1. 1.Protein Engineering Network Centres of ExcellenceUniversity of TorontoTorontoCanada
  2. 2.Department of Molecular and Medical GeneticsUniversity of TorontoTorontoCanada
  3. 3.Department of BiochemistryUniversity of TorontoTorontoCanada
  4. 4.Department of ChemistryUniversity of TorontoTorontoCanada
  5. 5.Division of Biochemistry ResearchHospital for Sick ChildrenTorontoCanada

Personalised recommendations