Journal of Biomolecular NMR

, Volume 4, Issue 5, pp 703–726 | Cite as

An automated procedure for the assignment of protein 1HN, 15N, 13Cα, 1Hα, 13Cβ and 1Hβ resonances

  • Mark S. Friedrichs
  • Luciano Mueller
  • Michael Wittekind
Research Paper

Summary

A computer algorithm that determines the 1HN, 15N, 13Cα, 1Hα, 13Cβ chemical-shift assignments of protein residues with minimal human intervention is described. The algorithm is implemented as a suite of macros that run under a modified version of the FELIX 1.0 program (Hare Research, Bothell, WA). The input to the algorithm is obtained from six multidimensional, triple-resonance experiments: 3D HNCACB, 3D CBCA(CO)HN, 4D HNCAHA, 4D HN(CO)CAHA, 3D HBHA(CO)NH and 3D HNHA(Gly). For small proteins, the two 4D spectra can be replaced by either the 3D HN(CA)HA, 3D H(CA)NNH, or the 15N-edited TOCSY-HSQC experiments. The algorithm begins by identifying and collecting the intraresidue and sequential resonances of the backbone and 13Cβ atoms into groups. These groups are sequentially linked and then assigned to residues by matching the 13Cα and 13Cβ chemical-shift profiles of the linked groups to that of the protein's primary structure. A major strength of the algorithm is its ability to overcome imperfect data, e.g., missing or overlapping peaks. The viability of the procedure is demonstrated with two test cases. In the first, NMR data from the six experiments listed above were used to reassign the backbone resonances of the 93-residue human hnRNP C RNA-binding domain. In the second, a simulated cross-peak list, generated from the published NMR assignments of calmodulin, was used to test the ability of the algorithm to assign the backbone resonances of proteins containing internally homologous segments. Finally, the automated method was used to assign the backbone resonances of apokedarcidin, a previously unassigned, 114-residue protein.

Keywords

Protein Automation Resonance assignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BaxA., CloreG.M. and GronenbornA.M. (1990) J. Magn. Reson., 88, 425–431.Google Scholar
  2. BaxA. and PochapskyS.S. (1992) J. Magn. Reson., 99, 638–643.Google Scholar
  3. BernsteinR., CieslarC., RossA., OschkinatH., FreundJ. and HolakT.A. (1993) J. Biomol. NMR, 3, 245–251.CrossRefGoogle Scholar
  4. BoucherW., LaueE.D., Campbell-BurkS.L. and DomailleP.J. (1992) J. Am. Chem. Soc., 114, 2262–2264.Google Scholar
  5. Campbell-BurkS.L., DomailleP.J., StarovasnikM.A., BoucherW. and LaueE.D. (1992) J. Biomol. NMR, 2, 639–646.PubMedGoogle Scholar
  6. CatastiP., CarraraE. and NicoliniC. (1990) J. Comput. Chem., 11, 805–818.Google Scholar
  7. CieslarC., CloreG.M. and GronenbornA.M. (1988) J. Magn. Reson., 80, 119–127.Google Scholar
  8. CieslarC., HolakT.A. and OschkinatH. (1990) J. Magn. Reson., 87, 400–407.Google Scholar
  9. CloreG.M., BaxA., DriscollP.C., WingfieldP.T. and GronenbornA.M. (1990) Biochemistry, 29, 8172–8184.PubMedGoogle Scholar
  10. ClowesR.T., BoucherW., HardmanC.H., DomailleP.J. and LaueE.D. (1993) J. Biomol. NMR, 3, 349–354.CrossRefGoogle Scholar
  11. ClubbR.T., ThanabalV. and WagnerG. (1992) J. Biomol. NMR, 2, 203–210.PubMedGoogle Scholar
  12. ConstantineK.L., GoldfarbV., WittekindM., FriedrichsM.S., AnthonyJ., NgS.-C. and MuellerL. (1992) J. Biomol. NMR, 3, 41–45.Google Scholar
  13. Domaille, P. (1991) Presentation at the Eastern Analytical Symposium, Sommerset, NJ.Google Scholar
  14. EadsC.D. and KuntzI.D. (1989) J. Magn. Reson., 82, 467–482.Google Scholar
  15. EcclesC., GüntertP., BilleterM. and WüthrichK. (1991) J. Biomol. NMR, 1, 111–130.PubMedGoogle Scholar
  16. FesikS.W. and ZuiderwegE.R.P. (1988) J. Magn. Reson., 78, 588–593.Google Scholar
  17. FesikS.W. and ZuiderwegE.R.P. (1990) Q. Rev. Biophys., 23, 97–131.PubMedGoogle Scholar
  18. GaoX. and BurkhartW. (1991) Biochemistry, 30, 7730–7739.Google Scholar
  19. GriesingerC., SørensenO.W. and ErnstR.R. (1987) J. Magn. Reson., 73, 574–579.Google Scholar
  20. GrzesiekS. and BaxA. (1992a) J. Am. Chem. Soc., 114, 6291–6293.Google Scholar
  21. GrzesiekS. and BaxA. (1992b) J. Magn. Reson., 99, 201–207.Google Scholar
  22. GrzesiekS., DöbeliH., GentzR., GarottaG., LabhardtA.M. and BaxA. (1992) Biochemistry, 31, 8180–8190.PubMedGoogle Scholar
  23. GrzesiekS., AnglisterJ. and BaxA. (1993) J. Magn. Reson., 101, 114–119.CrossRefGoogle Scholar
  24. GrzesiekS. and BaxA. (1993a) J. Biomol. NMR, 3, 185–204.PubMedGoogle Scholar
  25. GrzesiekS. and BaxA. (1993b) Acc. Chem. Res., 26, 131–138.Google Scholar
  26. HansenP.E. (1991) Biochemistry, 30, 10457–10466.PubMedGoogle Scholar
  27. HofsteadS.J., MatsonL.A., MaleckoA.R. and MarquardtH. (1992) J. Antibiot., 45, 1250–1254.PubMedGoogle Scholar
  28. IkuraM., KayL.E. and BaxA. (1990) Biochemistry, 29, 4659–4667.PubMedGoogle Scholar
  29. IkuraM., KayL.E., KrinksM. and BaxA. (1991a) Biochemistry, 30, 5498–5504.PubMedGoogle Scholar
  30. IkuraM., SperaS., BarbatoG., KayL.E., KrinksM. and BaxA. (1991b) Biochemistry, 30, 9216–9228.PubMedGoogle Scholar
  31. KayL.E., IkuraM., TschudinR. and BaxA. (1990) J. Magn. Reson., 89, 496–514.Google Scholar
  32. KayL.E., CloreG.M., BaxA. (1990b) Science, 249, 411–414.PubMedGoogle Scholar
  33. KayL.E., IkuraM. and BaxA. (1991) J. Magn. Reson., 91, 84–92.Google Scholar
  34. KayL.E., WittekindM., McCoyM.A., FriedrichsM.S. and MuellerL. (1992) J. Magn. Reson., 98, 443–450.Google Scholar
  35. KleywegtG.J., BoelensR., CoxM., LlinásM. and KapteinR. (1991) J. Biomol. NMR, 1, 23–47.PubMedGoogle Scholar
  36. KleywegtG.J., VuisterG.W., PadillaA., KnegtelR.M., BoelensR. and KapteinR. (1993) J. Magn. Reson., 102, 166–176.CrossRefGoogle Scholar
  37. LoganT.M., OlejniczakE.T., XuR.X. and FesikS.W. (1992) FEBS Lett., 314, 413–418.CrossRefPubMedGoogle Scholar
  38. LoganT.M., OlejniczakE.T., XuR.X. and FesikS.W. (1993) J. Biomol. NMR, 3, 225–231.CrossRefPubMedGoogle Scholar
  39. LyonsB.A., TashiroM., CedargrenL., NilssonB. and MontelioneG.T. (1993) Biochemistry, 32, 7839–7845.PubMedGoogle Scholar
  40. MarionD., KayL.E., SparksS.W., TorchiaD.A. and BaxA. (1989) J. Am. Chem. Soc., 111, 1515–1517.Google Scholar
  41. MontelioneG.T., LyonsB.A. and EmersonS.D. and TashiroM. (1992) J. Am. Chem. Soc., 114, 10974–10975.Google Scholar
  42. NelsonS.J., SchneiderD.M. and WandA.J. (1991) Biophys. J., 59, 1113–1122.PubMedGoogle Scholar
  43. OhB.H., WestlerW.M., DarbaP. and MarkleyJ.L. (1988) Science, 240, 908–911.PubMedGoogle Scholar
  44. OlejniczakE.T., XuR.X., PetrosA.M. and FesikS.W. (1992a) J. Magn. Reson., 100, 444–450.Google Scholar
  45. OlejniczakE.T., XuR.X. and FesikS.W. (1992b) J. Biomol. NMR, 2, 655–659.PubMedGoogle Scholar
  46. PeltonJ.G., TorchiaD.A., MeadowN.D., WongC.-Y. and RosemanS. (1991) Biochemistry, 30, 10043–10057.PubMedGoogle Scholar
  47. RicharzR. and WüthrichK. (1978) Biopolymers, 17, 2133–2141.Google Scholar
  48. SperaS. and BaxA. (1991) J. Am. Chem. Soc., 113, 5490–5492.Google Scholar
  49. Van deVenF.J.M. (1990) J. Magn. Reson., 86, 633–644.Google Scholar
  50. VuisterG.W. and BoelensR. (1987) J. Magn. Reson., 73, 328–333.Google Scholar
  51. WeberP.L., MalikayilJ.A. and MuellerL. (1988) J. Magn. Reson., 82, 419–426.Google Scholar
  52. WehrensR., LucasiusC., BuydensL. and KatemanG. (1993) J. Chem. Inf. Comput. Sci., 33, 245–251.PubMedGoogle Scholar
  53. WittekindM., GörlachM., FriedrichsM.S., DreyfussG. and MuellerL. (1992) Biochemistry, 31, 6254–6265.PubMedGoogle Scholar
  54. WittekindM., MetzlerW.J. and MuellerL. (1993) J. Magn. Reson., 101, 214–217.CrossRefGoogle Scholar
  55. WittekindM. and MuellerL. (1993) J. Magn. Reson., 101, 201–205.CrossRefGoogle Scholar
  56. XuJ., SanctuaryB.C. and GrayB.N. (1993) J. Chem. Inf. Comput. Sci., 33, 475–489.Google Scholar
  57. ZeinN., CasazzaA.M., DoyleT.W., LeetJ.E., SchroederD.R., SolomonW. and NadlerS.G. (1993) Proc. Natl. Acad. Sci. USA, 90, 8009–8012.PubMedGoogle Scholar
  58. ZimmermanD.E., KulikowskiC.A., WangL., LyonsB. and MontelioneG.T. (1994) J. Biomol. NMR, 4, 241–256.CrossRefPubMedGoogle Scholar

Copyright information

© ESCOM Science Publishers B.V. 1994

Authors and Affiliations

  • Mark S. Friedrichs
    • 1
  • Luciano Mueller
    • 1
  • Michael Wittekind
    • 1
  1. 1.Macromolecular NMR DepartmentBristol-Myers Squibb Pharmaceutical Research InstitutePrincetonUSA

Personalised recommendations