, Volume 17, Issue 4, pp 302–313 | Cite as

Electroencephalographic and behavioral effects of harmaline in intact cats and in cats with chronic mesencephalic transection

  • J. Villablanca
  • F. Riobó
Original Investigations


The EEG and behavioral effects of threshold doses of harmaline (2–3 mg/kg) were studied in 4 chronically implanted freely moving intact cats and 5 chronic animals with complete mesencephalic transection. Further analysis of the EEG events was performed in 6 Flaxedil immobilized cats. Behaviorally, the drug induced intense motor activation, tonic postural and gait abnormalities, tremor, abnormal facial expression, crying and neuro-vegetative phenomena (mydriasis, salivation, deglutition, tachypnea, bradycardia) in both intact and physiologically decerebrate cats plus exploratory behavior in intact animals. The duration of these behavioral effects was two hours, after which the cats remained neurologically depressed. Paradoxical sleep was suppressed for about 7 hours.

Electrocortically, the drug induced intermittent or continous hypersynchrony which was most predominent over visual areas. In intact cats there was a short desynchronization immediately after the injection and in the “cerveau isolé” the drug induced a “synchronization period”. Subcortical rhythmic bursts of 10 to 15 c/sec were recorded from the pontine and mesencephalic reticular formation in all cases; these were shown to be independent of descending influences and nonmuscular in origin. The EEG recorded from the lateral geniculate body also exhibited slow (1.5–3 c/sec), high voltage (200 μV) activity.

The electrocortical synchronization as well as the paradoxical sleep suppressor effects are discussed in the light of the MAO inhibiting action of harmaline. The tremorogenic effect is attributed to lower brain stem motor mechanisms and considered to be related to the pontine reticular EEG events. The fact that many of the actions of this hallucinogen can be accounted for without the necessary participation of rostral brain structures is particularly stressed.


Neuropharmacology Hallucinogens Harmaline Paradoxical Sleep Decerebrate State Tremor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cárdenas, G. F.: Estudio sobre el principio activo del Yagé. Thesis. Universidad Nacional, Facultad de Medicina y Ciencias Naturales. Bogotá, Colombia 1923.Google Scholar
  2. Jasper, H., Ajmone-Marsan, C.: A stereotaxic atlas of the diencephalon of the cat. Ottawa: Natl. Res. Council Cánada 1954.Google Scholar
  3. Jouvet, M.: Recherches sur les structures nerveuses et les mécanismes responsables des différentes phases du sommeil physiologique. Arch. ital. Biol. 100, 125–206 (1962).Google Scholar
  4. —: Mechanisms of the states of sleep: a neuropharmacological approach. Ass. Res. Nerv. Ment. Dis. Res. Publ. 45, 86–126 (1967).Google Scholar
  5. Kaneko, Z., Hishikawa, Y., Shimizu, A., Hidaka, Y., Kageyama, N., Fukui, Sh.: Effects of psychotropic drugs on the electrical activity of the brain and behavior of the cat. Folia psychiat. neurol. jap. Suppl. 6, 73–88 (1960).Google Scholar
  6. Koella, W. P., Czicman, J.: Mechanism of the EEG-synchronizing action of serotonin. Amer. J. Physiol. 211, 926–934 (1966).Google Scholar
  7. McIsaac, W. M.: A biomedical concept of mental disease. Postgrad. Med. 30, 111–118 (1961a).Google Scholar
  8. —, Khairallah, P. A., Page, I. H.: 10-Methoxy-harmalan, a potent serotonin antagonist which affects conditioned behavior. Science 135, 674–675 (1961b).Google Scholar
  9. Naranjo, C.: Psychotropic properties of the harmala alkaloids. In U.S. Public Health Serv. Pub. N 1645, Etnopharmacological Search for Psychoactive drugs, pp. 385–391. Washington; D.C. Goverment Printing Office 1967.Google Scholar
  10. Pennes, H. H., Hoch, P. H.: Psychomimetics, clinical and theoretical considerations: harmine, Win 2299 and Nalline. Amer.J.Psychiat. 113, 887–892 (1957).Google Scholar
  11. Riobó F., Palestini, M.: Efectos de la harmalina sobre el electroretinograma de gato. Proc. VIII Congr. Asoc. latino-amer. Ciencias Fisiol. Ciudad de México (México), pp. 131 (1967).Google Scholar
  12. Savoldi, F., Arrigo, L., Bolzani, L., Cosi, V.: Action électro-physiologique des sustances antiaminoxydasiques. Schweiz. Arch. Neurol. Neurochir. Psychiat. 95, 271–319 (1965).Google Scholar
  13. Undenfriend, S., Whitkop, B., Redfield, B. G., Weisbach, H.: Studies with reversible inhibitors of monoamine oxidase: harmaline and related compounds. Biochem. Pharmacol. 1, 160–166 (1958).Google Scholar
  14. Villablanca, J.: The electrocorticogram in the chronic ‘cerveau isolé’ cat. Electroenceph. clin. Neurophysiol. 21, 562–577 (1965).Google Scholar
  15. —: Behavioral and polygraphic study of ‘sleep’ and ‘wakefulness’ in chronic decerebrate cats. Electroenceph. clin. Neurophysiol. 21, 562–577 (1966a).Google Scholar
  16. —: Efectos de atropina, eserina y adrenalina en gatos con sección del mesencéfalo y en la preparación ‘hemisferio aislado’ de gato. Arch. Biol. Med. exp. 3, 118 to 129 (1966b).Google Scholar
  17. Wikler, A.: Pharmacological dissociation of behavior and EEG ‘sleep patterns’ in dogs: morphine, allylnormophine and atropine. Proc. Soc. exp. Biol. (N.Y.) 79, 261–265 (1952).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • J. Villablanca
    • 1
  • F. Riobó
    • 1
  1. 1.Cátedra de Fisiopatología, Escuela de MedicinaUniversidad de ChileSantiagoChile

Personalised recommendations