, Volume 33, Issue 7, pp 438–443 | Cite as

Familial predisposition to renal disease in two generations of Pima Indians with Type 2 (non-insulin-dependent) diabetes mellitus

  • D. J. Pettitt
  • M. F. Saad
  • P. H. Bennett
  • R. G. Nelson
  • W. C. Knowler


We studied the occurrence of renal disease by measuring serum creatinine and urine protein concentrations in the diabetic members of 316 Pima Indian families with Type 2 (non-insulin-dependent) diabetes in two successive generations to determine if diabetic renal disease aggregates in families. After adjustment for sex and other risk factors, proteinuria occurred among 14.3% of the diabetic offspring if neither parent had proteinuria, 22.9% if at least one diabetic parent had proteinuria, and 45.9% if both parents had diabetes and proteinuria. Among male offspring, an elevated serum creatinine concentration (≥177 μmol/l) was present in 11.7% if the parent had an elevated creatinine and in 1.5% if the parent did not. Thus, proteinuria and high serum creatinine aggregated in diabetic families, suggesting that susceptibility to renal disease is inherited independently of diabetes.

Key words

Type 2 (non-insulin-dependent) diabetes mellitus American Indians diabetic renal disease genetics 


  1. 1.
    Eggers PW, Connerton R, McMullan M (1984) The medicare experience with end-stage renal disease: trends in incidence, prevalence, and survival. Health Care Financing Review 5: 69–88Google Scholar
  2. 2.
    Moloney A, Tunbridge WMG, Ireland JT, Watkins PJ (1983) Mortality from diabetic nephropathy in the United Kingdom. Diabetologia 25: 26–30Google Scholar
  3. 3.
    Kamenetzky SA, Bennett PH, Dippe SE, Miller M, LeCompte PM (1974) A clinical and histologic study of diabetic nephropathy in the Pima Indians. Diabetes 23: 61–68Google Scholar
  4. 4.
    Nelson RG, Newman JM, Knowler WC, Sievers ML, Kunzelman CL, Pettitt DJ, Moffett CD, Teutsch SM, Bennett PH (1988) Incidence of end-stage renal disease in Type 2 (non-insulin-dependent) diabetes mellitus in Pima Indians. Diabetologia 31: 730–736Google Scholar
  5. 5.
    Nelson RG, Pettitt DJ, Carraher MJ, Baird HR, Knowler WC (1988) Effect of proteinuria on mortality in Type 2 diabetes. Diabetes 37: 1499–1504Google Scholar
  6. 6.
    Parving H-H, Oxenbøll B, Svendsen PA, Christiansen JS, Andersen AR (1982) Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol 100: 550–555Google Scholar
  7. 7.
    Viberti GC, Hill RD, Jarrett RJ, Argyropoulos A, Mahmud U, Keen H (1982) Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet I: 1430–1432Google Scholar
  8. 8.
    Mogensen CE, Christensen CK (1986) Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 311: 89–93Google Scholar
  9. 9.
    West KM, Erdereich LJ, Stober JA (1980) A detailed study of risk factors for retinopathy and nephropathy in diabetes. Diabetes 29: 501–508Google Scholar
  10. 10.
    Mijovic C, Fletcher JA, Bradwell AR, Barnett AH (1986) Phenotypes of the heavy chains of immunoglobulins in patients with diabetic microangiopathy: evidence for an immunogenetic predisposition. Br Med J 292: 433–435Google Scholar
  11. 11.
    Kunzelman CL, Knowler WC, Pettitt DJ, Bennett PH (1989) Incidence of proteinuria in type 2 diabetes mellitus in the Pima Indians. Kidney Int 35: 681–687Google Scholar
  12. 12.
    Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T (1983) Diabetic nephropathy in Type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 25: 496–501Google Scholar
  13. 13.
    Christlieb AR, Krolewski AS, Warram JH (1987) Systemic hypertension, diabetes mellitus and the kidney. Am J Cardiol 60: 61I-65IGoogle Scholar
  14. 14.
    Editorial (1988) What causes diabetic renal failure? Lancet I: 1433–1434Google Scholar
  15. 15.
    Krolewski AS, Warram JH, Christlieb AR, Busick EJ, Kahn CR (1985) The changing natural history of nephropathy in type I diabetes. Am J Med 78: 785–794Google Scholar
  16. 16.
    Barbosa J, Saner B (1984) Do genetic factors play a role in the pathogenesis of diabetic microangiopathy? Diabetologia 27: 487–492Google Scholar
  17. 17.
    Seaquist ER, Goetz FC, Povey S (1986) Diabetic nephropathy: an hypothesis regarding genetic susceptibility for the disorder. Minnesota Medicine 69: 457–459Google Scholar
  18. 18.
    Seaquist E, Goetz F, Rich S, Barbosa J (1989) Familial clustering of diabetic kidney disease: evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 320: 1161–1165Google Scholar
  19. 19.
    Viberti GC, Keen H, Wiseman MJ (1987) Raised arterial pressure in parents of proteinuric insulin dependent diabetics. Br Med J 295: 515–517Google Scholar
  20. 20.
    Krolewski AS, Canessa M, Warram JH, Laffel LMB, Christlieb AR, Knowler WC, Rand LI (1988) Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med 318: 140–145Google Scholar
  21. 21.
    Chobanian MC, Chevalier RL, Sturgill BC, Bolton WK (1984) Early onset of clinical diabetic nephropathy in children — a new subgroup? Int J Ped Nephrol 5: 23–29Google Scholar
  22. 22.
    Barnett AH, Pyke DA (1986) The genetics of diabetic complications. Clin Endocrinol Metab 15: 715–726Google Scholar
  23. 23.
    Bennett PH, Burch TA, Miller M (1971) Diabetes mellitus in American (Pima) Indians. Lancet II: 825–828Google Scholar
  24. 24.
    Knowler WC, Bennett PH, Hamman RF, Miller M (1978) Diabetes incidence and prevalence in Pima Indians: a 19-fold greater incidence than in Rochester Minnesota. Am J Epidemiol 108: 497–505Google Scholar
  25. 25.
    Technicon Autoanalyzer method File N.2b. (1965) Technicon Instruments Corporation, Tarrytown, N. Y.Google Scholar
  26. 26.
    Shevky MC, Stafford DD (1923) A clinical method for the estimation of protein in urine and other body fluids. Arch Int Med 32: 222–225Google Scholar
  27. 27.
    Chasson AL, Grady HJ, Stanley MA (1961) Determination of creatinine by means of automatic chemical analysis. Am J Clin Pathol 35: 83–88Google Scholar
  28. 28.
    fnWHO Study Group (1985) Diabetes mellitus. World Health Organization, Geneva pp 9–17 (Tech Rep Ser 727)Google Scholar
  29. 29.
    Ginsberg JM, Chang BS, Matarese RA, Garella S (1983) Use of single voided urine samples to estimate quantitative proteinuria. N Engl J Med 309: 1543–1546Google Scholar
  30. 30.
    Shaw AB, Risdon P, Lewis-Jackson JD (1983) Protein creatinine index and Albustix in assessment of proteinuria. Br Med J 287: 929–932Google Scholar
  31. 31.
    Conceptual Software, Inc. (1987) Prodas Reference Manual Version 3.2 A. Conceptual Software, Inc., Houston, Tex.Google Scholar
  32. 32.
    Kleinbaum DG, Kupper LL, Morgenstern H (1982) Epidemiologie research: principles and quantitative methods. Van Nostrand Reinhold, New York Berkshire Melbourne Ontario, pp 419–446Google Scholar
  33. 33.
    Lee J (1981) Covariance adjustment of rates based on the multiple logistic regression model. J Chronic Dis 34: 415–426Google Scholar
  34. 34.
    Knowler WC, Bennett PH, Nelson RG, Saad MF, Pettitt DJ (1988) Blood pressure before the onset of diabetes predicts albumin uria in Type 2 (non-insulin-dependent) diabetes. Diabetologia 31: 509 (Abstract)Google Scholar
  35. 35.
    Mathiesen ER, Rønn B, Jensen T, Storm B, Deckert T (1990) Relationship between blood pressure and urinary albumin excretion in development of microalbuminuria. Diabetes 39: 245–249Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • D. J. Pettitt
    • 1
  • M. F. Saad
    • 1
  • P. H. Bennett
    • 1
  • R. G. Nelson
    • 2
  • W. C. Knowler
    • 1
  1. 1.Diabetes and Arthritis Epidemiology Section, Phoenix Epidemiology and Clinical Research BranchNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthPhoenixUSA
  2. 2.Department of Biostatistics and EpidemiologyThe Cleveland Clinic FoundationPhoenixUSA

Personalised recommendations