Diabetologia

, Volume 39, Issue 2, pp 212–219

Effects of dietary sodium on blood pressure in IDDM patients with nephropathy

  • I. Mühlhauser
  • K. Prange
  • P. T. Sawicki
  • R. Bender
  • A. Dworschak
  • W. Schaden
  • M. Berger
Originals

Summary

The objectives of the study were to assess the effects of moderate sodium restriction on blood pressure in insulin-dependent diabetic (IDDM) patients with nephropathy and high normal or mildly hypertensive blood pressure (primary objective), and to document possible associated changes of exchangeable body sodium, body volumes, components of the renin-angiotensin-aldosterone system, atrial natriuretic peptide, and catecholamines (secondary objective). Sixteen patients with untreated systolic blood pressure ≥ 140 <160 mmHg and/or diastolic blood pressure ≥ 85 <100 mmHg were included in a double-blind, randomized, placebo-controlled trial. After a 4-week run-in period on their usual diet and a 2-week dietary training period to reduce sodium intake to about 90 mmol/day, eight patients received 100 mmol/day sodium supplement (group 2) and eight patients a matching placebo (group 1) for 4 weeks while continuing on the reduced-sodium diet. Patients were examined at weekly intervals. Main response variables were mean values of supine and sitting systolic and diastolic blood pressure as measured in the clinic and by the patients at home. The differences in blood pressure between the beginning and the end of the blinded 4-week study period were calculated and the differences in changes between the two patient groups were regarded as the main outcome parameters. During the blinded 4-week study period, average urinary sodium excretion was 92±33 (mean ± SD) mmol/day in group 1 and 199±52 mmol/day in group 2 (p=0.0002). The differences in blood pressure changes between the two patient groups were 3.9(−1.2 to 9) mmHg [mean (95% confidence intervals)] for systolic home blood pressure, 0.9(−3.7 to 5.5) mmHg for diastolic home blood pressure, 4.9(−3.3 to 13.1) mmHg for clinic systolic blood pressure and 5.3(1 to 9.7 mmHg, p=0.02) for clinic diastolic blood pressure. Combining all patients, there were relevant associations between changes of urinary sodium excretion and blood volume (Spearman correlation coefficient r=0.57), blood pressure and angiotensin II (diastolic: r=−0.7; systolic: r=−0.48), and exchangeable body sodium and renin activity (r=−0.5). In conclusion, in this study of IDDM patients with nephropathy and high normal or mildly hypertensive blood pressure, a difference in sodium intake of about 100 mmol/day for a period of 4 weeks led to a slight reduction of clinic diastolic blood pressure. Studies including larger numbers of patients with various stages of nephropathy and hypertension are needed to definitely clarify the effects of sodium restriction in IDDM.

Key words

Dietary sodium diabetes mellitus blood pressure nephropathy body volumes exchangeable body sodium renin-angiotensin-aldosterone system atrial natriuretic peptide noradrenaline 

Abbreviations

ACE

Angiotensin converting enzyme

ANP

atrial natriuretic peptide

CV

coefficient of variation

GFR

glomerular filtration rate

RPF

renal plasma flow

PAH

paraaminohippuric acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Châtel R, Weidmann P, Flammer J, Ziegler WH, Beretta-Piccoli C, Vetter W, Reubi FC (1977) Sodium, renin, aldosterone, catecholamines, and blood pressure in diabetes mellitus. Kidney Int 12: 412–421Google Scholar
  2. 2.
    Weidmann P, Beretta-Piccoli C, Trost BN (1985) Pressor factors and responsiveness in hypertension accompanying diabetes mellitus. Hypertension 7[Suppl 2]:33–42Google Scholar
  3. 3.
    Weidmann P, Ferrari P (1991) Central role of sodium in hypertension in diabetic subjects. Diabetes Care 14: 220–232Google Scholar
  4. 4.
    Trevisan R, Fioretto P, Semplicini A et al. (1990) Role of insulin and atrial natriuretic peptide in sodium retention in insulin-treated IDDM patients during isotonic volume expansion. Diabetes 39: 289–298Google Scholar
  5. 5.
    O'Hare JA, Ferriss JB, Brady D, Twomey B, O'Sullivan DJ (1985) Exchangeable sodium and renin in hypertensive diabetic patients with and without nephropathy. Hypertension 7[Suppl 2]:43–48Google Scholar
  6. 6.
    Feldt-Rasmussen B, Mathiesen ER, Deckert T, Giese J, Christensen NJ, Bent-Hansen L, Nielsen MD (1987) Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30: 610–617Google Scholar
  7. 7.
    Tuck M, Corry D, Trujillo A (1990) Salt-sensitive blood pressure and exaggerated vascular reactivity in the hypertension of diabetes mellitus. Am J Med 88: 210–216Google Scholar
  8. 8.
    Diabetes and Nutrition Study Group of the European Association for the Study of Diabetes-1988 (1988) Nutritional recommendations for individuals with diabetes mellitus. Diab Nutr Metab 1: 145–149Google Scholar
  9. 9.
    Alderman MH (1994) Non-pharmacological treatment of hypertension. Lancet 344: 307–311Google Scholar
  10. 10.
    Dodson PM, Beevers M, Hallworth R, Webberley MJ, Fletcher RF, Taylor KG (1989) Sodium restriction and blood pressure in hypertensive type II diabetics: randomised blind controlled and crossover studies of moderate sodium restriction and sodium supplementation. BMJ 298: 227–230Google Scholar
  11. 11.
    Mogensen CE (1982) Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. BMJ 285: 685–688Google Scholar
  12. 12.
    Parving HH, Andersen AR, Smidt UM, Svensen PA (1983) Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet I:1175–1179Google Scholar
  13. 13.
    Mathiesen ER, Borch-Johnsen K, Jensen DV, Deckert T (1989) Improved survival in patients with diabetic nephropathy. Diabetologia 32: 884–886Google Scholar
  14. 14.
    The Working Group on Hypertension in Diabetes (1987) Statement on hypertension in diabetes mellitus. Final report. Arch Int Med 147: 830–842Google Scholar
  15. 15.
    Krans HMJ, Porta M, Keen H (1992) Diabetes care and research in Europe, the St Vincent declaration action programme. Implementation document. Giorn Ital Diabetol 12[Suppl 2]:22–26Google Scholar
  16. 16.
    American Diabetes Association (1993) Treatment of hypertension in diabetes. Diabetes Care 16: 1394–1401Google Scholar
  17. 17.
    Mühlhauser I, Sawicki P, Didjurgeit U, Jörgens V, Berger M (1988) Uncontrolled hypertension in type 1 diabetes: assessment of patients' desires about treatment and improvement of blood pressure control by a structured treatment and teaching programme. Diabet Med 5: 693–698Google Scholar
  18. 18.
    Sawicki PT, Didjurgeit U, Mühlhauser I, Bender R, Heinemann L, Berger M (1994) Smoking is associated with progression of diabetic nephropathy. Diabetes Care 17: 126–131Google Scholar
  19. 19.
    Bock J, Toutenburg H (1991) Sample size determination in clinical research. In: Rao CR, Chakraborty R (eds) Handbook of statistics, vol 8. Elsevier, Amsterdam, pp 515–538Google Scholar
  20. 20.
    Jörgens V, Grüsser M, Bott U, Mühlhauser I, Berger M (1993) Effective and safe translation of intensified insulin therapy to general internal medicine departments. Diabetologia 36: 99–105Google Scholar
  21. 21.
    Venhaus A, Chantelau E (1988) Self-selected unrefined and refined carbohydrate diets do not affect metabolic control in pump-treated diabetic patients. Diabetologia 31: 153–157Google Scholar
  22. 22.
    Heering P, Kutkuhn B, Kreuzpaintner G, Reinhard T, Sundmacher R, Grabensee B (1991) Untersuchungen zur Nierenfunktion nierengesunder Patienten unter Ciclosporin. Klin Wochenschr 69: 880–886Google Scholar
  23. 23.
    Plum J, Grabensee B (1991) Atrial natriuretic peptide in dialysis patients under various conditions of volume homeostasis. J Int Med 229: 209–216Google Scholar
  24. 24.
    Oster P, Hackenthal E, Hepp R (1973) Radioimmunoassay of angiotensin II in rat plasma. Experientia 29: 353–354Google Scholar
  25. 25.
    Schnurr E, Lahme W, Küppers H (1980) Measurements of renal clearance of inulin and PAH in the steady state without urine collection. Clin Nephrol 13: 26–29Google Scholar
  26. 26.
    Kunkel R, Oberhausen E (1968) Die gleichzeitige Bestimmung des Gesamtkaliums und des austauschbaren Natriums beim Menschen. In: Hoffmann G, Höfer R (eds) Radionuklide in Kreislaufforschung und Kreislaufdiagnose. Schattauer, Stuttgart, New York, pp 411–415Google Scholar
  27. 27.
    Miller H, Wilson GM (1953) The measurement of exchangeable sodium in man using the isotope Na-24. Clin Science 12: 97–111Google Scholar
  28. 28.
    Hermann H-J (1982) Nuklearmedizin. Urban und Schwarzenberg München, Wien, Baltimore, pp 337–347Google Scholar
  29. 29.
    Westfall PH, Young SS (1993) Resampling-based multiple testing. Wiley, New YorkGoogle Scholar
  30. 30.
    SAS/STAT (1987) Guide for Personal Computers. Version 6 edn. SAS Institute Inc, Cary, N.C.Google Scholar
  31. 31.
    SAS Technical Report P-229 (1992) SAS/STAT Software: Changes and Enhancements, Release 6.07. SAS Institute Inc., Cary, N.C.Google Scholar
  32. 32.
    Hansen KW, Christiansen CK, Andersen PH, Pedersen MM, Christiansen JS, Mogensen CE (1992) Ambulatory blood pressure in microalbuminuric type 1 diabetic patients. Kidney Int 41: 847–854Google Scholar
  33. 33.
    Hansen KW, Pedersen MM, Marshall SM, Christiansen JS, Mogensen CE (1992) Circadian variation of blood pressure in patients with diabetic nephropathy. Diabetologia 35: 1074–1079Google Scholar
  34. 34.
    Liniger C, Favre L, Assal J-Ph (1991) Twenty-four hour blood pressure and heart rate profiles of diabetic patients with abnormal cardiovascular reflexes. Diabet Med 8: 420–427Google Scholar
  35. 35.
    Brochner-Mortensen J (1973) Glomerular filtration rate and extracellular fluid volume during normoglycemia and moderate hyperglycemia in diabetes. Scand J Clin Lab Invest 32: 311–316Google Scholar
  36. 36.
    MacGregor GA, Markandu ND, Sagnella GA, Singer DRJ, Cappuccio FP (1989) Double-blind study of three sodium intakes and long-term effects of sodium restriction in essential hypertension. Lancet II:1244–1247Google Scholar
  37. 37.
    Alderman MH, Madhavan S, Ooi WL, Cohen H, Sealey JE, Laragh JH (1991) Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. N Engl J Med 324: 1098–1104Google Scholar
  38. 38.
    Meade TW, Cooper JA, Peart WS (1993) Plasma renin activity and ischaemic heart disease. N Engl J Med 329: 616–669Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • I. Mühlhauser
    • 1
  • K. Prange
    • 1
  • P. T. Sawicki
    • 1
  • R. Bender
    • 1
  • A. Dworschak
    • 2
  • W. Schaden
    • 2
  • M. Berger
    • 1
  1. 1.Department of Metabolic Diseases and Nutrition (WHO-Collaborating Centre for Diabetes)Heinrich-Heine University of DüsseldorfGermany
  2. 2.Nuclear Research Centre JülichHeinrich-Heine University of DüsseldorfGermany
  3. 3.Medizinische Klinik der UniversitÄt DüsseldorfKlinik für Stoffwechselkrankheiten und ErnÄhrungDüsseldorfGermany

Personalised recommendations