Antonie van Leeuwenhoek

, Volume 57, Issue 3, pp 165–172 | Cite as

Utilization of mucin by oral Streptococcus species

  • J. S. van der Hoeven
  • C. W. A. van den Kieboom
  • P. J. M. Camp
Article

Abstract

The ability of oral Streptococcus strains to utilize oligosaccharide chains in mucin as a source of carbohydrate was studied in batch cultures. Pig gastric mucin, as a substitute of human salivary mucin, was added to chemically defined medium containing no other carbohydrates. Strains of S. mitior attained the highest cell density, while mutans streptococci: S. mutans, S. sobrinus, S. rattus, grew very little in the medium with mucin. S. mitis, S. sanguis, and S. milleri in decreasing order, showed intermediate growth. Mucin break-down as measured by sugar analyses indicated that oligosaccharide chains were only partially degraded. Every strain produced one or more exoglycosidases potentially involved in hydrolysis of oligosaccharide. The enzyme activities occurred mainly associated with the cells, and very little activity was found in the culture fluids. The relationships between glycosidase activities and growth, or mucin degradation were not always clear.

Key words

fermentation glycosidase mucin oligosaccharide degradation Streptococcus species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beighton D, Smith K & Hayday H (1986) The growth of bacteria and the production of exoglycosidic enzymes in the dental plaque of macaque monkeys. Archs oral Biol. 31: 829–835Google Scholar
  2. Beighton D & Smith K (1986) The modulation of exoglycosidic enzymes in the supragingival plaque of macaque monkeys. FEMS Microbiology Letters 34: 319–322Google Scholar
  3. Beighton D, Smith K, Glenister DA, Salamon K & Keevil CW (1988) Increased degradative enzyme production by dental plaque bacteria in mucin-limited continuous culture. Microbial Ecology in Health and Disease 1: 85–94Google Scholar
  4. Bridge PD & Sneath PHA (1982) Streptococcus gallinarum sp. nov. and Streptococcus oralis sp. nov. Int. J. Syst. Bacteriol. 32: 410–415Google Scholar
  5. Carlstedt-Duke B, Midtvedt T, Nord CE & Gustafsson BE (1986) Isolation and characterization of a mucin-degrading strain of Peptostreptococcus from rat intestinal tract. Acta Path. Microbiol. Immunol. Scand. Sect. B, 94: 293–300Google Scholar
  6. Clamp JR, Bhatti T & Chambers RE (1971) The determination of carbohydrate in biological materials by gas-liquid chromatography. Methods. Biochem. Anal. 19: 229–344Google Scholar
  7. Conchie J (1974) Acid-catalyzed hydrolysis and methanolysis of glycoproteins. In: WhistlerR & BeMillerJN (Eds) Methods in Carbohydrate Chemistry, Vol. 7 (pp 195–199) Academic Press, New YorkGoogle Scholar
  8. De Jong NH, Van der Hoeven JS, Van Os JH & Olijve HJ (1984) Growth of oral Streptococcus species and Actinomyces viscosus in human saliva. Appl. Environm. Microbiol. 47: 901–904Google Scholar
  9. De Jong MH, Van der Hoeven JS & Van Os JH (1986) Growth of micro-organisms from supragingival dental plaque on saliva agar. J. Dent. Res. 65: 85–88Google Scholar
  10. De Jong MH & Van der Hoeven JS (1987) The growth of oral bacteria on saliva. J. Dent. Res. 66: 498–505Google Scholar
  11. De Stoppelaar JD, Van Houte J & Backer Dirks O (1970) The effect of carbohydrate restriction on the presence of Streptococcus mutans, Streptococcus sanguis and iodophilic polysaccharide-producing bacteria in human dental plaque. Caries Res. 4: 114–123Google Scholar
  12. Donkersloot JA, Robrish RA & Krishevsky MI (1972) Fluorimetric determination of deoxyribonucleic acid in bacteria with ethidium bromide. Appl. Microbiol. 24: 179–183Google Scholar
  13. Gibson GR, Cummings JH & MacFarlane GT (1988) Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl. Environm. Microbiol. 54: 2750–2755Google Scholar
  14. Glenister DA, Salamon KE, Smith K, Beighton D & Keevil CW (1988) Enhanced growth of complex communities of dental plaque bacteria in mucin-limited continuous culture. Microbial Ecology in Health and Disease 1: 31–38Google Scholar
  15. Hardie JM (1986) The oral streptococci. In: Sneath PHA, Nair NS, Sharp ME & Holt JG. Bergey's Manual of Systematic Bacteriology, Vol 2, Williams and Wilkins, Baltimore, Md.Google Scholar
  16. Hill RH (1986) Digestion of mucin polysaccharides in vitro by bacteria isolated from the rabbit cecum. Current Microbiol. 14: 117–120Google Scholar
  17. Hoskins LC (1968) Bacterial degradation of gastro-intestinal mucins, II. Bacterial origin of fecal ABH(O) blood group antigen-destroying enzymes. Gastroenterology 54: 218–224Google Scholar
  18. Hoskins LC & Boulding ET (1976) Degradation of blood group antigens in human colon ecosystems. J. Clin. Invest. 57: 63–73Google Scholar
  19. Hoskins LC, Agustinus M, McKee WB, Boulding ET, Kriaris M & Niedermeyer G (1985) Mucin degradation in human colon ecosystem. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoprotein. J. Clin. Invest. 75: 944–953Google Scholar
  20. Kilian M & Rölla G (1976) Initial colonization of teeth in monkeys as related to diet. Infect. Immun. 14: 1022–1027Google Scholar
  21. Kilpper-Bälz R, Williams BL, Lütticken R & Schleifer KH (1984) Relatedness of Streptococcus milleri with Streptococcus anginosus and Streptococcus constellatus. Syst. Appl. Microbiol. 5: 494–500Google Scholar
  22. Kilpper-Bälz Wenzig P & Schleifer KH (1985) Molecular relationships and classification of some viridans streptococci as Streptococcus oralis and amended description of Streptococcus oralis (Bridge and Sneath 1982). Int. J. Syst. Bacteriol. 35: 482–488Google Scholar
  23. Kobata A (1979) Use of endo- and exoglycosidases for structural studies of glycoconjugates. Analyt. Biochem. 100: 1–14Google Scholar
  24. Krasse B, Edwardsson S, Svensson I & Trell L (1967) Implantation of caries-inducing streptococci in the human oral cavity. Archs oral Biol. 12: 231–236Google Scholar
  25. Leach S (1967) Isolation in pure culture of human oral organisms capable of producing neuraminidase. Nature 210: 599–600Google Scholar
  26. Malamud D (1985) Influence of salivary proteins on the fate of oral bacteria. In: MergenhagenSE & RosanB (Eds) Molecular Basis of Oral Microbial Adhesion (pp 117–124) ASM, WashingtonGoogle Scholar
  27. Nord CE & Wadström T (1972) Formation of α-L- and β-D-fucosidase in cultures of Streptococcus mitis. Med. Microbiol. Immunol. 158: 95–103Google Scholar
  28. Pigman W (1977) Submandibular and sublingual glycoprotein. In: HorowitzMI & PigmanW (Eds) The Glycoconjugates, Vol. 1 (pp 137–150) Academic Press, New YorkGoogle Scholar
  29. Pinter JK, Hayashi JA & Bahn AN (1968) Extracellular streptococcal neuraminidase. J. Bact. 95: 1491–1492Google Scholar
  30. Pinter JK, Hayashi JA & Bahn AN (1969) Carbohydrate hydrolases or oral streptococci. Archs oral Biol. 14: 735–744Google Scholar
  31. Roberton AM & Stanley RA (1982) In vitro utilization of mucin by Bacteroides fragilis. Appl. Environm. Microbiol. 43: 325–330Google Scholar
  32. Salyers AA, West SEH, Vercelotti JR & Wilkins TD (1977) Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl. Environm. Microbiol. 354: 529–533Google Scholar
  33. Shizukuishi S, Taniguchi T, Nakamura R & Tsunemitsu A (1976) α-L-Fucosidase activity of some oral streptococci. Archs oral Biol. 21: 781–783Google Scholar
  34. Shizukuishi S, Nonaka H, Nagata K, Shibata S, Nakamura R & Tsunemitsu A (1980) Hydrolysis of milk oligosaccharides by the oral bacterium Streptococcus sanguis ATCC 10557. Archs oral Biol. 25: 67–69Google Scholar
  35. Stanley R, Ram SP, Wilkinson RK & Roberton AM (1986) Degradation of pig gastric and colonic mucins by bacteria isolated from the pig colon. Appl. Environm. Microbiol 51: 1104–1109Google Scholar
  36. Sweeley CC, Bentley R, Makita M & Wells WW (1963) Gasliquid chromatography of trimethylsilyl derivates of sugars and related substances. J. Am. Chem. Soc. 85: 2497–2507Google Scholar
  37. Ter Steeg PF & Van der Hoeven JS (1989) Development of periodontal microflora on human serum. Microbial Ecology in Health and Disease 2: 1–10Google Scholar
  38. Theilade E, Theilade J & Mikkelsen L (1982) Microbiological studies on early dentogingival plaque on teeth and mylar strips in humans. J. Period. Res. 17: 12–25Google Scholar
  39. Van der Hoeven JS, De Jong MH, Camp PJM & Van den Kieboom CWA (1985) Competition between oral Streptococcus species in the chemostat under alternating conditions of glucose limitation and excess. FEMS Microbiology Ecology 31: 373–379Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • J. S. van der Hoeven
    • 1
  • C. W. A. van den Kieboom
    • 1
  • P. J. M. Camp
    • 1
  1. 1.Laboratory of Oral MicrobiologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations