Advertisement

Psychopharmacologia

, Volume 14, Issue 5, pp 383–393 | Cite as

Anticholinergic drug-induced sleep-like EEG pattern in man

  • Turan M. Itil
Original Investigations

Summary

Clinical, quantitative, and qualitative EEG investigations were carried out in a group of psychotic subjects with the anticholinergic drugs Ditran and atropine sulfate. Both anticholinergics induced, in relatively “low” dosages (Ditran, 0.005–0.05 mg/kg, and atropine, 0.04–0.30 mg/kg), drowsiness-like EEG patterns with low voltage slow waves and superimposed fast activity. These EEG changes correlated clinically with fluctuations of consciousness and subdelirious behavior. The clinical and EEG characteristics of the drowsiness-like stage after anticholinergics were different from those seen during spontaneous drowsiness.

After high dosages of Ditran and atropine (Ditran, 0.05–0.30 mg/kg, and atropine, 0.30–0.50 mg/kg), high voltage slow waves and spindle patterns were seen in the EEG of some subjects. Patients exhibited marked impairment of consciousness, sleep-like behavior, and sometimes coma-like states. The anticholinergic-induced sleep-like state differed significantly both clinically and electroencephalographically from chlorpromazine-induced sleep, thiopental sleep, and spontaneous daytime sleep.

These investigations indicate that anticholinergic-induced sleep-like states represent entirely different stages of vigilance and consciousness than those of natural drowsiness and sleep.

Key-Words

Quantitative-EEG Sleep Digital-Computer Atropine Ditran 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bente, D., u. T. M. Itil: Der Chlorpromazinschlaf als elektroencephalographische Provokationsmethode. Zbl. ges. Neurol. Psychol. 140, 20–21 (1957).Google Scholar
  2. Bradley, P. B., and J. Elkes: The effect of atropine, hyoscyamine, physostigmine and neostigmine on the electrical activity of the brain of the conscious cat. J. Physiol. (Lond.) 120, 14–15 (1953).Google Scholar
  3. — —: The effects of some drugs on the electrical activity of the brain. Brain 80, 77–117 (1957).PubMedGoogle Scholar
  4. Dement, W., and N. Kleitman: Cyclic variations of EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroenceph. clin. Neurophysiol. 9, 673–690 (1957).CrossRefGoogle Scholar
  5. Flügel, F., u. T. M. Itil: Klinisch-elektroencephalographische Untersuchungen mit „Verwirrtheit“ hervorrufenden Substanzen. Psychopharmacologia (Berl.) 3, 79–98 (1962).Google Scholar
  6. Funderburk, W. H., and T. J. Case: The effect of atropine on cortical potentials. Electroenceph. clin. Neurophysiol. 3, 213–225 (1951).CrossRefPubMedGoogle Scholar
  7. Itil, T. M.: Die Veränderungen der Pentothal-Reaktion im Elektroencephalogramm bei Psychosen unter der Behandlung mit Psychotropen Drogen. In Proceedings of the Third World Congress of Psychiatry, Univ. of Toronto Press, pp. 947–950 (1961).Google Scholar
  8. Itil, T. M.: Elektroencephalographische Studien bei endogenen Psychosen und der Behandlung mit psychotropen Medikamenten, ed. 2, Ahmet Sait Matbaasi, Istanbul 1964.Google Scholar
  9. —: Quantitative EEG changes induced by anticholinergic drugs and their behavioral correlates in man. In Wortis, J. (Ed.): Recent Advances in Biological Psychiatry, Vol. 8, pp. 151–173. New York: Plenum Press, 1966.Google Scholar
  10. —, and M. Fink: Anticholinergic drug-induced delirium: experimental modification, quantitative EEG and behavioral correlations. J. nerv. ment. Dis. 143, 492–507 (1966).PubMedGoogle Scholar
  11. — —: EEG and behavioral aspects of the interaction of anticholinergic hallucinogens with centrally active compounds. In Bradley, P. B., and M. Fink (Eds.): Progress in Brain Research, Vol. 28, pp. 166–168. New York: Plenum Press, 1968.Google Scholar
  12. -, and A. Keskiner: Psychopathological and psychosomatic rating scales. Psychiatric Research Foundation of Missouri, Publication No. 12 (1966).Google Scholar
  13. - H. Neubauer, and A. Keskiner: Potentiation of anticholinergic-induced EEG slow wave activity by phenothiazines and the behavioral correlations in man. Proc. Int. Cong. Electroenceph. clin. Neurophysiol., p. 93 (1965).Google Scholar
  14. Lindsley, D. F., R. S. Carpenter, and E. K. Killam: EEG and discrimination performance in cats under atropine. I. Light-dark and pattern discrimination. Fed. Proc. 24, 516 (1965).Google Scholar
  15. Longo, V. G.: Effects of scopolamine and atropine in electroencephalographic behavior reactions due to hypothalamic stimulation. J. Pharmacol. exp. Ther. 116, 198–207 (1956).PubMedGoogle Scholar
  16. Loomis, A. L., H. Newton, and H. Garret: Further observations on the potential alpha-rhythms of the cerebral cortex during sleep. Science 2, 198–200 (1935).Google Scholar
  17. Ostfeld, A. M., X. Machne, and K. R. Unna: The effects of atropine on the electroencephalogram and behavior in man. J. Pharmacol. exp. Ther. 128, 265–272 (1960).PubMedGoogle Scholar
  18. Rinaldi, F., and H. E. Himwich: Altering responses and actions of atropine and cholinergic drugs. Arch. Neurol. Psychiat. (Chic.) 73, 387–395 (1955a).Google Scholar
  19. — —: Cholinergic mechanisms involved in function of mesodiencephalic activating system. Arch Neurol. Psychiat. (Chic.) 73, 396–402 (1955b).Google Scholar
  20. Rougeul, A., J. Verdeaux, and P. Gogan: Limits of the dissociation between EEG and behavior under atropine-like drugs in cats. Int. J. Neuropharmacol. 4, 265–272 (1965).CrossRefPubMedGoogle Scholar
  21. Sadowski, B., and V. Longo: Electroencephalographic and behavioral correlates of an instrumental reward conditioned response in rabbits. A physiological and pharmacological study. Electroenceph. clin. Neurophysiol. 14, 465–476 (1962).CrossRefPubMedGoogle Scholar
  22. Seiden, L. S., J. Koenig, and K. F. Killam: EEG and discrimination performance in cats under atropine. II. Total luminous flux (TLF) discrimination. Fed. Proc. 24, 516 (1965).Google Scholar
  23. Wikler, A.: Pharmacologic dissociation of behavior and EEG “sleep patterns” in dogs: morphine, n-allymorphine, and atropine. Proc. Soc. exp. Biol. (N.Y.) 79, 261–265 (1952).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Turan M. Itil
    • 1
  1. 1.Department of Psychiatry of the University of Missouri School of Medicine at the Missouri Institute of PsychiatrySt. Louis

Personalised recommendations