Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Changes in free amino acid content and activities of amination and transamination enzymes in yeasts grown on different inorganic nitrogen sources, including hydroxylamine

  • 64 Accesses

  • 3 Citations

Abstract

This study concerns inter- and intraspecific differences between yeasts at assimilation of different nitrogen sources. Alterations in the content of free amino acids in cells and media as well as in the related enzyme activities during growth were studied. The hydroxylamine (HA)-tolerant Endomycopsis lipolytica was examined and compared with the nitrate-reducing Cryptococcus albidus, and Saccharomyces cerevisiae, requiring fully reduced nitrogen for growth. Special attention was paid to alanine, aspartic acid, and glutamic acid, the amino acids closely related to the Krebs cycle keto acids. The amino acids were analyzed as their n-propyl N-acetyl esters by gas-liquid chromatography (GLC).

The composition of the amino acid pool was similar for the three yeasts. Glutamic acid was predominant; in early log-phase cells of E. lipolytica contents of 200–234 μmol·g-1 dry weight were found. A positive correlation between the specific growth rate and the size of the amino acid pool was observed.

The assimilation of ammonia was mediated by glutamate dehydrogenase (GDH). The NADP-GDH was the dominating enzyme in all three yeasts showing the highest specific activity in Cr. albidus grown on nitrate (6980 nmol· (min-1)·(mg protein-1). Glutamine synthetase (GS) displayed a high specific activity in S. cerevisiae, which also had a high amount of glutamine. The assimilation of HA did not differ greatly from the assimilation of ammonium in E. lipolytica. The existing differences could rather be explained as provoked by the concentration of available nitrogen.

This is a preview of subscription content, log in to check access.

References

  1. AbadieF. 1968. Assimilation des nitrates et de composés azotés par quelques levures et organismes levuriformes. — Ann. Inst. Pasteur 115: 197–211.

  2. AllenD. W. 1963: The effect of hydroxylamine on rabbit-reticulocyte ribosomes. — Biochim. Biophys. Acta 68: 418–424.

  3. AnderssonI., NorkransB. and OdhamG. 1972. Oximinoacids in the inorganic nitrogen metabolism. — Experientia 28: 1156–1157.

  4. BrownC. M., BurnV. J. and JohnsonB. 1973. Presence of glutamate synthase in fission yeast and its possible role in ammonia assimilation. — Nature New Biology 246: 115–116.

  5. DawsonP. S. S. 1965. The intracellular amino acid pool of Candida utilis during growth in batch and continuous flow cultures. — Biochim. Biophys. Acta 111: 51–66.

  6. FergusonA. R. and SimsA. P. 1974. The regulation of glutamine metabolism in Candida utilis: the role of glutamine in the control of glutamine synthetase. — J. Gen. Microbiol. 80: 159–171.

  7. HayesW. 1964. The genetics of bacteria and their viruses. — Blackwell Scientific Publications, Oxford.

  8. LacrouteF., PiérardA., GrensonM. and WiameJ. M. 1965. The biosynthesis of carbamoyl phosphate in Saccharomyces cerevisiae. — J. Gen. Microbiol. 40: 127–142.

  9. LowryO. H., RosebroughN. J., FarrA. L. and RandallR. J. 1951. Protein measurement with the Folin phenol reagent. — J. Biol. Chem. 193: 265–275.

  10. Lundström-ErikssonA. and NorkransB. 1968. Studies on marine occurring yeasts: relations to inorganic nitrogen compounds, especially hydroxylamine. — Arch. Mikrobiol. 62: 373–383.

  11. McNallE. G. and AtkinsonD. E. 1957. Nitrate reduction. II. Utilization of possible intermediates as nitrogen sources and as electron acceptors. — J. Bacteriol. 74: 60–66.

  12. NasonA., AbrahamR. G. and AverbachB. C. 1954. The enzymic reduction of nitrite to ammonia by reduced pyridine nucleotides. — Biochim. Biophys. Acta 15: 159–161.

  13. NorkransB. 1966. Studies on marine occurring yeasts: growth related to pH, NaCl concentration and temperature. — Arch. Microbiol. 54: 374–392.

  14. NorkransB. 1969. Hydroxylamine as the sole nitrogen source for growth of some Candida sp. —Acta Chem. Scand. 23: 1457–1459.

  15. NorkransB., OdhamG. and RönnowP. 1972. Organic nitrogen products in cultures of yeasts utilizing hydroxylamine as the sole nitrogen source. p. 79–93. In A.Kocková-Kratochvílová and E.Minárik (eds), Yeasts, models in science and technics. — Publishing House of the Slovak Academy of Sciences, Bratislava.

  16. NorkransB. and Tunblad-JohanssonI. 1977. Cellular content of the Krebs cycle keto acids in yeasts grown on different nitrogen sources, including hydroxylamine. — Arch. Microbiol. 115: 127–133.

  17. RaunioR. P. and LeppävirtaM. 1975. The effect of culture age, chloramphenicol and B6 inhibitors on intra- and extracellular keto and amino acids of Escherichia coli B. — J. Gen. Microbiol. 87: 141–149.

  18. RoonR. J., EvenH. L. and LarimoreF. 1974. Glutamate synthase: properties of the reduced nicotinamide adenine dinucleotide-dependent enzyme from Saccharomyces cerevisiae. — J. Bacteriol. 118: 89–95.

  19. SiegelW. H., DonohueT. and BernlohrR. W. 1977. Determination of pools of tricarboxylic acid cycle and related acids in bacteria. — Appl. Environ. Microbiol. 34: 512–517.

  20. SimsA. P. and FergusonA. R. 1974. The regulation of glutamine metabolism in Candida utilis: studies with 15NH3 to measure in vivo rates of glutamine synthesis. — J. Gen. Microbiol. 80: 143–158.

  21. SimsA. P., FolkesB. F. and BusseyA. H. 1968. Mechanisms involved in the regulation of nitrogen assimilation in micro-organisms and plants. p. 91–114. In E. J.Hewitt and C. V.Cutting (eds), Recent aspects of nitrogen metabolism in plants. — Academic Press, London, New York.

  22. StanleyS. O. and BrownC. M. 1976. Inorganic nitrogen metabolism in marine bacteria: the intracellular free amino acid pools of a marine pseudomonad. — Marine Biol. 38: 101–109.

  23. SteinbergR. A. 1939. Effect of nitrogen compounds and trace elements on growth of Aspergillus niger. — J. Agr. Res. 59: 731–748.

  24. Tunblad-JohanssonI. 1977. Quantitative determination of free amino acids by gas-liquid chromatography with special reference to yeasts. — Acta Path. Microbiol. Scand. Sect. B, Suppl. 259: 17–24.

  25. VirtanenA. I. and SarisN.-E. 1955. Organic hydroxylamine compounds formed from nitrite in Torulopsis utilis. — Acta Chem. Scand. 9: 337–339.

  26. WatsonT. G. 1976. Amino-acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino-acid nitrogen source. — J. Gen. Microbiol. 96: 263–268.

  27. WiemkenA. and DürrM. 1974. Characterization of amino acid pools in the vacuolar compartment of Saccharomyces cerevisiae. — Arch. Microbiol. 101: 45–57.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Norkrans, B., Tunblad-Johansson, I. Changes in free amino acid content and activities of amination and transamination enzymes in yeasts grown on different inorganic nitrogen sources, including hydroxylamine. Antonie van Leeuwenhoek 47, 217–230 (1981). https://doi.org/10.1007/BF00403393

Download citation

Keywords

  • Glutamic Acid
  • Specific Growth Rate
  • Free Amino Acid
  • Glutamine Synthetase
  • Hydroxylamine