Archives of Microbiology

, Volume 146, Issue 3, pp 301–308 | Cite as

Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus

  • S. Schäfer
  • C. Barkowski
  • G. Fuchs
Original Papers

Abstract

Growth of Thermoproteus neutrophilus at 85°C was studied using an improved mineral medium with CO2, CO2 plus acetate, CO2 plus propionate, or CO2 plus succinate as carbon sources; sulfur reduction with H2 to H2S was the sole source of energy. None of the carbon compounds added was oxidized to CO2. The organism grew autotrophically with a generation time of 9–14 h, up to a cell density of 0.5 g dry weight per liter (2×109 cells/ml). Propionate did not stimulate, succinate slightly stimulated the growth rate. Acetate, even at low concentrations (0.5 mM), stimulated the growth rate, the generation time being shortened to 3–4 h. Acetate provided 70% of the cell carbon, which shows that Thermoproteus neutrophilus is a facultative autotroph. The path of these carbon precursors into cell compounds was studied by 14C long-term labelling and investigation of enzyme activities. Propionate could not be used as a major carbon source and was incorporated only into isoleucine, probably via the citramalate pathway. Acetate was a preferred carbon source which suppressed autotrophic CO2 fixation: acetate grown cells exhibited an incomplete citric acid cycle in which 2-oxoglutarate dehydrogenase was present, but fumarate reductase was “repressed”. The succinate incorporation pattern and enzyme pattern indicated that autotrophic CO2 fixation proceeded via a yet to be defined reductive citric acid cycle.

Key words

Thermoproteus neutrophilus Archaebacterium Autotrophic Reductive citric acid cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen MB (1959) Studies with Cyanidium caldarium an anomalously pigmented chlorophyte. Arch Microbiol 32:270–277Google Scholar
  2. Anfinsen B (1965) Aconitase from pig heart muscle. In: Colowick SP, Kaplan NO (eds) Methods enzymol, vol 1. Academic Press, New York, pp 695–698Google Scholar
  3. Antranikian G, Herzberg C, Gottschalk G (1982) Characterisation of ATP citrate lyase from Chlorobium limicola. J Bacteriol 152:1284–1287Google Scholar
  4. Belkin S, Wirsen CO, Jannasch HW (1985) Biological and abiological sulfur reduction at high temperatures. Appl Environ Microbiol 49:1057–1061Google Scholar
  5. Bergmeyer HU (1974) Methoden der enzymatischen Analyse. Verlag Chemie, WeinheimGoogle Scholar
  6. Brock TD, Brock UM, Belley, RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68Google Scholar
  7. Buchanan BB (1969) Role of ferredoxin in the synthesis of α-ketobutyrate from propionyl coenzyme A and carbon dioxide by enzymes from photosynthetic and nonphotosynthetic bacteria. J Biol Chem 244:4218–4223Google Scholar
  8. Calvin M, Bassham JA (1962) The photosynthesis of carbon compounds. Benjamin, New YorkGoogle Scholar
  9. Charon NW, Johnson RC, Peterson DC (1974) Amino acid biosynthesis in the spirochete Leptospira: Evidence for a novel pathway of isoleucine biosynthesis. J Bacteriol 117:203–211Google Scholar
  10. Decker P, Riffart W (1950) Pabierchromatographie mit wasserfreien Lösungsmitteln. Chem Z 74:261Google Scholar
  11. Diekert GB, Thauer RK (1978) Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol 136:597–606Google Scholar
  12. Eikmanns B, Jaenchen R, Thauer RK (1983) Propionate assimilation by methanogenic bacteria. Arch Microbiol 136: 106–110Google Scholar
  13. Ekiel J, Smith JCP, Sprott DG (1984) Biosynthesis of isoleucine in methanogenic bacteria: A 13C NMR study. Biochemistry 23:1683–1687Google Scholar
  14. Evans MCW, Buchanan BB, Arnon DJ (1966) A new ferredoxindependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55:928–934Google Scholar
  15. Fischer F, Zillig W, Stetter KO, Schneider G (1983) Chemolithotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature (Lond) 301:511–513Google Scholar
  16. Fuchs G, Stupperich E (1986) Carbon assimilation pathway in archaebacteria. Syst Appl Microbiol 7:364–369Google Scholar
  17. Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 117: 61–66Google Scholar
  18. Fuchs G, Stupperich E, Jaenchen R (1980a) Autotrophic CO2 fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Arch Microbiol 128:56–63Google Scholar
  19. Fuchs G, Stupperich E, Eden G (1980b) Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128:64–71Google Scholar
  20. Ivanovsky RN, Sintsov MV, Kondratieva EM (1980) ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Arch Microbiol 128:239–241Google Scholar
  21. Jansen K, Stupperich E, Fuchs G (1982) Carbohydrate synthesis from acetyl CoA in the autotroph Methanobacterium thermoautotrophicum. Arch Microbiol 32:355–364Google Scholar
  22. Kandler OK, Stetter KO (1981) Evidence for autotrophic CO2 assimilation in Sulfolobus brierleyi via a reductive carboxylic acid pathway. Zentralbl Bakteriol Hyg I Abt Orig C 2:111–121Google Scholar
  23. Kandler O, Zillig W (1986) Archaebacteria '85. Fischer, Stuttgart New YorkGoogle Scholar
  24. Kaufmann S, Gilvarg G, Cori O, Ochoa S (1953) Enzymatic oxidation of α-ketoglutarate and coupled posphorylation. J Biol Chem 203:869–888Google Scholar
  25. Passera C, Pedrotti H, Ferrari G (1964) Thin-layer chromatography of carboxylic acids and ketoacids of biological interest. J Chromatogr 14:289–291Google Scholar
  26. Paulsen JM, Lam MD (1966) Spinach ribulose diphosphate carboxylase. I. Purification and properties of the enzyme. Biochemistry 5:2350–2357Google Scholar
  27. Quayle JR, Keech DB (1959) Carbon assimilation by Pseudomonas oxalaticus (OX1). 2. Formate and carbon dioxide utilization by cell-free extracts of the organism grown on formate. Biochem J 72:631–637Google Scholar
  28. Roberts RB, Abelson PH, Cowie DB, Bolton ET, Britton JR (1957) Studies of bioxynthesis in Escherichia coli. Carnegie Institute, WashingtonGoogle Scholar
  29. Simon H, Floss H (eds) (1967) Anwendung von Isotopen in der organischen Chemie und Biochemie, vol 1. Springer, Berlin Heidelberg New YorkGoogle Scholar
  30. Sirevåg R (1974) Further studies on carbon dioxide fixation in Chlorobium. Arch Microbiol 98:3–18Google Scholar
  31. Sirevåg R (1975) Photoassimilation of acetate and metabolism of carbohydrate in Chlorobium thiosulfatophilum. Arch Microbiol 104:105–111Google Scholar
  32. Stams AJM, Kremer DR, Nicolay K, Weenk GH, Hansen TA (1984) Pathway of propionate fermentation in Desulfobulbus propionicus. Arch Microbiol 139:167–173Google Scholar
  33. Stegemann H (1960) Bestimmung von Aminosäuren mit dithionitreduziertem Ninhydrin. Hoppe-Seyler's Z Physiol Chem 319: 102–109Google Scholar
  34. Stupperich E (1980) Autotrophe CO2-Fixierung in Methanobacterium thermoautotrophicum. Dissertation, University of MarburgGoogle Scholar
  35. Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47:533–606Google Scholar
  36. Wood HG, Drake HL, Hu S (1982) Studies with Clostridium thermoaceticum and the resolution of the pathway used by acetogenic bacteria that grow on carbon monoxide or carbon dioxide and hydrogen. Proc Biochem Symp 29-56Google Scholar
  37. Zeikus JG, Fuchs G, Kenealy W, Thaner RK (1977) Oxidoreductase involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132:604–613Google Scholar
  38. Zillig W, Stetter KO, Schäfer W, Janekovic P, Wunderl S, Holz J, Palm P (1981) Thermoproteales: A novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from icelandic solfatares. Zentralbl Bakteriol Hyg I Abt Orig C 2:205–227Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • S. Schäfer
    • 1
  • C. Barkowski
    • 1
  • G. Fuchs
    • 1
  1. 1.Abteilung Angewandte MikrobiologieUniversität UlmUlmFederal Republic of Germany

Personalised recommendations