Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Utilization of (E)-2-butenoate (Crotonate) by Clostridium kluyveri and some other Clostridium species

  • 96 Accesses

  • 31 Citations

Abstract

Clostridium La 1 obtained from a Clostridium kluyveri culture was compared with a typical C. kluyvery strain (DSM 555). The former grows on crotonate and is unable to use ethanol-acetate as carbon sources. The latter grows on crotonate only after long adaptation periods. Resting cells of both strains show also pronounced differences in the fermentation of crotonate. This holds even for C. kluyveri grown on crotonate. Besides several other differences the most striking is that there is no hybridization between the DNA of both strains.

Crotonate seems not to be a very special carbon source since C. butyricum and C. pasteurianum grow on crotonate medium supplemented by peptone and yeast extract.

This is a preview of subscription content, log in to check access.

Abbreviations

EA-medium:

ethanol and acetate as carbon source

C-medium:

crotonate as carbon source

DSM:

Deutsche Sammlung von Mikroorganismen

References

  1. Allen, S. H. G., Kellermeyer, R. W., Stjernholm, R. L., Wood, H. G.: Purification and properties of enzymes involved in the propionic acid fermentation. J. Bacteriol. 87, 171–187 (1964)

  2. Bader, J., Günther, H., Rambeck, B., Simon, H.: Properties of two Clostridia strains acting as catalysts for the preparative stereospecific hydrogenation of 2-enoic acids and 2-alken-1-ols with hydrogen gas. Hoppe-Seyler's Z. Physiol. Chem. 359, 19–27 (1978)

  3. Barker, H. A., Taha, S. M.: Clostridium kluyveri, an organism concerned in the fornation of caproic acid from ethyl alcohol. J. Bacteriol. 43, 347–363 (1942)

  4. Barker, H. A., Jeng, J.-M., Neff, N., Robertson, J. M., Tam, F. K., Hosaka, S.: Butyryl CoA: acetoacetate CoA-transferase from a lysine-fermenting Clostridium. J. Biol. Chem. 253, 1219–1225 (1978)

  5. Bartl, K., Cavalar, C., Krebs, T., Ripp, E., Rétey, J., Hull, W. E., Günther, H., Simon, H.: Synthesis of stereospecific deuterated phenylalanines and determination of their configuration. Eur. J. Biochem. 72, 247–250 (1977)

  6. Bartsch, R. G., Barker, H. A.: A vinylacetate isomerase from Clostridium kluyveri. Arch. Biochem. Biophys. 92, 122–132 (1961)

  7. Bergmeyer, H. U., Holz, G., Klotzsch, H., Lang, G.: Phosphotransacetylase aus Clostridium kluyveri. Züchtung des Bakteriums, Isolierung, Kristallisation und Eigenschaften des Enzyms. Biochem. Z. 338, 114–121 (1963)

  8. Bornstein, B. T., Barker, H. A.: The energy metabolism of Clostridium kluyveri and the synthesis of fatty acids. J. Biol. Chem. 172, 659–669 (1948)

  9. Bridson, E. Y., Brecker, A.: Design and formulation of microbial culture media, pp. 225. In: Methods in microbiology, Vol. 3A, (J. R. Norris, D. W. Ribbons, eds.), pp. 229–296. London: Academic Press Inc. 1970

  10. Buchanan, R. E., Gibbons, N. E. (eds.): Bergey's manual of determinative bacteriolog, 8th ed. Baltimore: Williams and Wilkins 1974

  11. Bühler, M., Tischer, W., Giesel, H., Simon, H.: Occurrence, properties and the possible physiological role of enoate reductases in different clostridia. Hoppe-Seyler's Z. Physiol. Chem. 360, 1136–1137 (1979)

  12. Cummings, C. S., Johnson, J. L.: Taxonomy of the Clostridia: Wall composition and DNA homologies in Clostridium butyricum and other butyric acid-producing Clostridia. J. Gen. Microbiol. 67, 33–46 (1971)

  13. Decker, K., Jungermann, K., Thauer, R. K.: Energy production in anaerobic organisms. Angew. Chem. Int. Ed. Engl. 9, 138–158 (1970)

  14. De Ley, J., Cattoir, H., Reynarts, A.: The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12, 133–142 (1970)

  15. Focht, D. D.: Microbial degradation of DDT metabolites to carbon dioxide, water and chloride. Butt. Environ. Contam. Toxicol. 7, 52–56 (1972)

  16. Freese, E., Sheu, C. W., Galliers, E.: Function of lipophilic acids as antimicrobial food additives. Nature 241, 321–325 (1973)

  17. Gebhard, W.: Kinetik, Stereochemie, Substratspezifität und Mechanismus von Crotonase und (R,S)-3-Hydroxybutyrat umsetzende Enzyme aus Clostridium kluyveri. Diss. München 1977

  18. Günther, H., Krezdorn, E., Simon, H. (1976): Stereospecific hydrogenations with microorganisms and hydrogen gas. In: Fifth Int. Fermentation Symposium (Dellweg, H., ed.), p. 217. Berlin: Verlag Versuchs- und Lehranstalt für Spiritusfabriken und Fermentationstechnologie im Institut für Gärunggewerbe und Biotechnologie 1976

  19. Hashimoto, H., Rambeck, B., Günther, H., Simon, H.: Über das Vorkommen einer Reduktase von Δ2-Carbonsāuren in Clostridium kluyveri mit einer von der Butyryl-CoA-Dehydrogenase verschiedenen Stereospezifität. Hoppe-Seyler's Z. Physiol. Chem. 356, 1203–1208 (1975)

  20. Herbert, D., Phipps, P. J., Strange, R. E.: Chemical analysis of microbial cells. In: Methods in Microbiology, Vol. 5B (Norris, J. R., Ribbons, D. W., eds.), pp. 209–344. London, New York: Academic Press 1971

  21. v. Hugo, H., Schoberth, S., Madan, V. K., Gottschalk, G.: Coenzyme specificity of dehydrogenases and fermentation of pyruvate by Clostridia. Arch. Microbiol. 87, 189–202 (1972)

  22. Kennedy, E. P., Barker, H. A.: Butyrate oxidation in the absence of inorganic phosphate by Clostridium kluyveri. J. Biol. Chem. 191, 419–438 (1951)

  23. Kleiner, D., Burris, R. H.: The hydrogenase of Clostridium pasteurianum. Kinetic studies and the role of molybdenum. Biochim. Biophys. Acta 212, 417–427 (1970)

  24. La Roche, H. J., Kellner, M., Günther, H., Simon, H.: Stereochemie der Butyryl-CoA-Dehydrogenase in Clostridium kluyveri. Hoppe-Seyler's Z. Physiol. Chem. 352, 399–402 (1971)

  25. Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid (DNA) from its denaturation temperature. J. Mol. Biol. 5, 109–118 (1962)

  26. Müller, J., Melchinger, H.: Methoden der Mikrobiologie. Stuttgart: Franck'sche Verlagsbuchhandlung 1964

  27. Schoberth, S.: Untersuchungen über die Äthanol-Acetat-Gärung von Clostridium kluyveri. Diss., Göttingen 1970

  28. Schulman, M., Valentino, D.: Kinetics and catalytic properties of coenzyme A-transferase from Peptostreptococcus elsdenii. J. Bacteriol. 128, 372–381 (1976)

  29. Sedlmaier, H., Tischer, W., Rauschenbach, P., Simon, H.: On the mechanism of 2-enoate reductase. Elimination of halogen hydrazids from 3-halogene-2-enoates during reduction with NADH. FEBS Letters, 100, 129–132 (1979)

  30. Simon, H.: Mikroorganismen als stereospezifische Hydrier- und Austauschkatalysatoren. Nachr. Chem. Techn. 23, 66–68 (1975)

  31. Sramek, S. J., Frerman, F. E.: Purification and properties of E. coli coenzyme A-transferase. Arch. Biochem. Biophys. 171, 14–26 (1975)

  32. Stadtman, E. R.: The coenzyme A transferase system in C. kluyveri. J. Biol. Chem. 203, 501–512 (1953)

  33. Stadtman, E. R., Barker, H. A.: Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. V. A consideration of postulated 4-carbon intermediates in butyrates synthesis. J. Biol. Chem. 181, 221–235 (1949)

  34. Tahara, S., Kurogochi, S., Kuda, M., Mizutani, J.: Fungal metabolism of α,β-unsaturated carboxylic acids. Part II. Fungal metabolism of sorbic acid. Agric. Biol. Chem. 41, 1635–1642 (1977)

  35. Thaler, H., Eisenlohr, W.: Zur Chemic der Ketonranzigkeit. III. Mitt.: Über die Bildung von Methylketonen aus α, β-ungesättigten Fettsäuren durch Penicillium glaucum. Biochem. Z. 308, 88–102 (1941)

  36. Thauer, R. K.: Dr. rer. nat., thesis, Freiburg 1968

  37. Thauer, R. K., Jungermann, K., Decker, K.: Energy conversation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)

  38. Thauer, R. K., Jungermann, K., Henninger, H., Wenning, J., Decker, K.: The energy metabolism of Clostridium kluyveri. Eur. J. Biochem. 4, 173–180 (1968a)

  39. Thauer, R. K., Jungermann, K., Wenning, J., Decker, K.: Characterization of crotonate grown Clostridium kluyveri by its assimilatory metabolism. Arch. Microbiol. 64, 125–129 (1968b)

  40. Tischer, W., Bader, J., Simon, H.: Purification and some properties of a hitherto-unknown enzyme reducing the carbon-carbon double bond of α,β-unsaturated carboxylated anions. Eur. J. Biochem. 97, 103–112 (1979)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bader, J., Günther, H., Schleicher, E. et al. Utilization of (E)-2-butenoate (Crotonate) by Clostridium kluyveri and some other Clostridium species. Arch. Microbiol. 125, 159–165 (1980). https://doi.org/10.1007/BF00403214

Download citation

Key words

  • Clostridium kluyveri
  • Crotonate