Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of sugars, Na+-, and K+-ions on biopterin transport in Crithidia fasciculata

  • 14 Accesses

  • 2 Citations


Biopterin uptake by Crithidia fasciculata is pH dependent with optimum at pH 6 and is strongly inhibited by 0.5 mM NAA and DNP,respectively. Both inhibitors also reduce respiration by 40% (NAA) and 97% (DNP). K+-ions (1.1%) and K+/Na+ (0.5% each) stimulate biopterin uptake to the same high extent, but ouabain has no effect, thereby ruling out involvement of Na+/K+ pump. In absence of these ions, even in 5% glucose solution biopterin uptake is reduced to minimum.

Proton excretion seems to be linked to sugar uptake. Both these sugars seem to have the same site of entry, demonstrated by competitive uptake, though D-glucose is taken up much faster by Crithidia than D-galactose. DNP (0.5 mM) causes greater proton excretion in glucose than in galactose medium. With NAA (0.5 mM) proton excretion is inhibited in both glucose and galactose media. D-glucose promotes greater biopterin uptake than D-galactose.

This is a preview of subscription content, log in to check access.



α-Naphthyl acetic acid




  1. Cosgrove, W. B.: Utilization of Carbohydrates by the mosquito flagellate, Crithidia fasciculata. Canad. J. Microbiol. 5, 573–578 (1959)

  2. Cosgrove, W. B.: Carbohydrate utilization by trypanosomids from insects. Exp. Parasitol. 13, 173–177 (1963)

  3. Dewey, V., Kidder, G. W.: 2,4-Diamino-5,6,7,8-tetrahydroquinazoline, a new pteridine antagonist. Biochem. biophys. Res. Commun. 34, 495–502 (1969)

  4. Guttman, H. N.: Crithidia assay for unconjugated pteridines In: Pteridine chemistry, W. Pfleiderer and E. C. Taylor, Eds., pp. 255–266 Oxford: Pergamon Press 1964

  5. Lessler, M. A., Molloy, E., Schwab, C. M.: Measurement of oxidative activity in biological systems by an automated oxygen electrode. Fed. Proc. 24, 336 (1965)

  6. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

  7. Maass, A. R., Wiebelhaus, V. D.: Die biologischen und diuretischen Eigenschaften von Triamteren. In: Therapie mit Triamteren, K. Fellinger Ed., pp,. 2–21. Stuttgart: Thieme 1967

  8. Min, H. S.: Studies on the transport of carbohydrates in Crithidia luciliae. J. cell. comp. Physiol. 65, 243–248 (1965)

  9. Rembold, H.: Hemmung des Crithidia-Wachstums durch 4-Amino-pyrimidine. Hoppe-Seyler's Z. physiol. Chem. 339, 258–259 (1964)

  10. Rembold, H., Buff, K.: Tetrahydrobiopterin, a cofactor in mitochondrial electron transfer. Europ. J. Biochem. 28, 579–585, 586–591 (1972)

  11. Rembold, H., Gyure, W. L.: Biochemistry of the pteridines. Angew. Chem., internat. Edit. 11, 1061–1072 (1972)

  12. Rembold, H., Metzger, H.: Reindarstellung von Biopterin und 7-Biopterin. Hoppe-Seyler's Z. physiol. Chem. 329, 291–292 (1962)

  13. Rembold, H., Metzger, H.: Synthese und chromatographische Trennung von (8a-14C) Biopterin und (8a-14C)7-Biopterin. Chem. Ber. 96, 1394–1405 (1963)

  14. Rembold, H., Vaubel, A.: Energy-dependent transport of pteridines into the trypanosomid flagellate, Crithidia fasciculata. Hoppe-Seyler's Z. physiol. Chem. 351, 1277–1279 (1970)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rembold, H., Vaubel, A. & Rao, P.J. Effect of sugars, Na+-, and K+-ions on biopterin transport in Crithidia fasciculata . Arch. Microbiol. 97, 51–62 (1974). https://doi.org/10.1007/BF00403044

Download citation

Key words

  • Crithidia fasciculata
  • Biopterin
  • D-Glucose
  • D-Galactose
  • Na+-K+-α-Naphthyl Acetic Acid
  • 2,4-Dinitrophenol
  • Proton Excretion
  • Transport