, Volume 170, Issue 4, pp 528–534

d-Mannitol dehydrogenase and d-mannitol-1-phosphate dehydrogenase in Platymonas subcordiformis: some characteristics and their role in osmotic adaptation

  • D. F. E. Richter
  • G. O. Kirst


d-Mannitol-1-phosphate dehydrogenase (EC and d-mannitol dehydrogenase (EC were estimated in a cell-free extract of the unicellular alga Platymonas subcordiformis Hazen (Prasinophyceae), d-Mannitol dehydrogenase had two activity maxima at pH 7.0 and 9.5, and a substrate specifity for d-fructose and NADH or for d-mannitol and NAD+. The Km values were 43 mM for d-fructose and 10 mM for d-mannitol. d-Mannitol-1-phosphate dehydrogenase had a maximum activity at pH 7.5 and was specific for d-fructose 6-phosphate and NADH. The Km value for d-fructose 6-phosphate was 5.5 mM. The reverse reaction with d-mannitol 1-phosphate as substrate could not be detected in the extract. After the addition of NaCl (up to 800 mM) to the enzyme assay, the activity of d-mannitol dehydrogenase was strongly inhibited while the activity of d-mannitol-1-phosphate dehydrogenase was enhanced. Under salt stress the Km values of the d-mannitol dehydrogenase were shifted to higher values. The Km value for d-fructose 6-phosphate as substrate for d-mannitol-1-phosphate dehydrogenase remained constant. Hence, it is concluded that in Platymonas the d-mannitol pool is derectly regulated via alternative pathways with different activities dependent on the osmotic pressure.

Key words

d-Mannitol dehydrogenase d-Mannitol-1-phosphate dehydrogenase Osmotic adaptation Platymonas 



d-fructose 6-phosphate


2-(N-morpholino)ethanesulfonic acid




d-mannitol-1-phosphate dehydrogenase


1,4-piperazinediethanesulfonic acid




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken, W.B., Wright, J.R., LeTourneau, D. (1969) Mannitol biosynthesis in Pyrenochaeta terrestris. I. d-mannitol-1-phosphate: NAD oxidoreductase. Physiol. Plant. 22, 609–619Google Scholar
  2. Craigie J.S., McLachlin, J., Majak, W., Ackman, R.G., Tocher, C.S. (1966) Photosynthesis in algae: II. Green algae with special reference to Dunaliella SPP and Tetraselmis SPP Can. J. Bot. 44, 1247–1254Google Scholar
  3. Dickson, D.M.J., Kirst, G.O. (1986) The role of β-dimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis. Planta 167, 536–543Google Scholar
  4. Gimmler, H., Kaaden, R., Kirchner, U., Weyand, A. (1984) The chloride sensitivity of Dunaliella parva enzymes. Z. Pflanzenphysiol. 114, 131–150Google Scholar
  5. Gooday, G.W. (1971) A biochemical autoradiographic study of the role of the golgi bodies in thecal formation in Platymonas tetrathele. J. Exp. Bot. 22, 959–971Google Scholar
  6. Horikoshi, K., Iida, S., Ikeda, Y. (1965) Mannitol und mannitol dehydrogenase in conidia of Aspergillus oryzae. J. Bacteriol. 89, 326–330PubMedGoogle Scholar
  7. Hult, K., Gatenbeck, S. (1978) Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata. Eur. J. Biochem. 88, 607–612PubMedGoogle Scholar
  8. Hult, K., Veide, A., Gatenbeck, S. (1980) The distribution of NADPH regenerating mannitol cycle among fungal species. Arch. Microbiol. 128, 253–255PubMedGoogle Scholar
  9. Ikawa, T., Watanabe, T., Nisizawa, K. (1972) Enzymes involved in the last steps of the biosynthesis of mannitol in brown algae. Plant Cell Physiol. 13, 1017–1029Google Scholar
  10. Kauss, H. (1967) Isoloridosid und Osmoregulation bei Ochromonas malhamensis. Z. Pflanzenphysiol. 56, 453–465Google Scholar
  11. Kauss, H. (1977) Biochemistry of osmotic regulation. Int. Rev. Biochem., Plant Biochem. II, vol 13, pp. 119–140 Northcote, D.H., ed. University Park Press, BaltimoreGoogle Scholar
  12. Kauss, H. (1983) Volume regulation in Poterioochromonas. Plant Physiol. 71, 169–172Google Scholar
  13. Kirst, G.O. (1975) Beziehungen zwischen Mannitkonzentration und osmotischer Belastung bei der Brackwasseralge Platymonas subcordiformis Hazen. Z. Pflanzenphysiol. 76, 316–325Google Scholar
  14. Kirst, G.O. (1977) Coordination of ionic relations and mannitol concentrations in the euryhaline unicellular alga, Platymonas subcordiformis (Hazen) after osmotic shocks. Planta 135, 69–75Google Scholar
  15. Kirst, G.O. (1985) Osmotische Adaptation bei Algen. Naturwissenschaften 72, 125–132Google Scholar
  16. Kiser, R.C., Niehaus, W.G., Jr. (1981) Purification and kinetic characterization of mannitol-1-phosphate dehydrogenase from Aspergillus niger. Arch. Biochem. Biophys. 211, 613–621PubMedGoogle Scholar
  17. Kremer, B.P. (1977) Biosynthesis of polyols in Pelvetia canaliculata. Z. Pflanzenphysiol. 81, 68–73Google Scholar
  18. Kremer, B.P., Kirst, G.O. (1982) Biosynthesis of photosynthates and taxonomy of algae. Z. Naturforsch. 37c, 761–771Google Scholar
  19. Kremer, B.P. (1985) Aspects of cellular compartmentation in brown marine macroalgae. J. Plant Physiol. 120, 401–407Google Scholar
  20. Küppers, U., Weidner, M. (1980) Seasonal variation of enzyme activities in Laminaria hyperborea. Planta 148, 222–230Google Scholar
  21. Leighton, T.J., Stock, J.J., Kelln, R.A. (1970) Macroconidial germination in Microsporum gypseum. J. Bacteriol. 103, 439–446PubMedGoogle Scholar
  22. Lewin, R.A. (1958) The cell walls of Platymonas. J. Gen. Microbiol. 19, 87–90PubMedGoogle Scholar
  23. Lowry, O.H., Rosenbrough, N.S., Farr, A.L., Randall, R.J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275PubMedGoogle Scholar
  24. Martin, F., Canet, D., Marchal, J.P. (1985) 13C Nuclear magnetic resonance study of mannitol cycle and trehalose synthesis during glucose utilization by the ectomycorrhizal ascomycete Cenococcum graniforme. Plant Physiol. 77, 499–502Google Scholar
  25. Morton, N., Dickerson, A.G., Hammond, J.B.W. (1985) Mannitol metabolism Agaricus bisporus: Purification and properties of mannitol dehydrogenase. J. Gen. Microbiol. 131, 2885–2890Google Scholar
  26. Niehaus, W.G., Jr., Dilts, R.P., Jr. (1982) Purification and characterization of mannitol dehydrogenase from Aspergillus parasiticus. J. Bacteriol. 151, 243–250PubMedGoogle Scholar
  27. Nordhorn, G., Weidner, M., Willenbrink, J. (1976) Isolation and photosynthetic activities of chloroplasts of the brown alga Fucus serratus L. Z. Pflanzenphysiol. 80, 153–165Google Scholar
  28. Provasoli, L., McLaughlin, J.J.A., Droop, M.R. (1957) The development of artificial media for marine algae. Arch. Microbiol. 25, 392–428Google Scholar
  29. Ruffner, H.P., Rast, D., Tobler, H., Karesch, H. (1978) Purification and properties of mannitol dehydrogenase from Agaricus bisporus sporocarps. Phytochemistry 17, 865–868Google Scholar
  30. Strandberg, G.W. (1979) d-mannitol metabolism in Aspergillus candidus. J. Bacteriol. 97, 1305–1309Google Scholar
  31. Ueng, S.T.-H., Hartanowicz, P., Lewandowski, C., Keller, J., Holick, M., McGuinness, E.T. (1976) d-Mannitol dehydrogenase from Absidia glauca. Purification, metabolic role, and subunit interactions. Biochemistry 15, 1743–1749PubMedGoogle Scholar
  32. Wang, S.-Y.C., LeTourneau, D. (1972) Mannitol biosynthesis in Selerotinia sclerotiorum. Arch. Microbiol. 81, 91–99Google Scholar
  33. Wegmann, K. (1983) Osmotische Regulation des Stoffwechsels bei Algen. Verh. Ges. Ökologie 10, 529–536Google Scholar
  34. Wolff, J.B., Kaplan, N.O. (1955) d-Mannitol-1-phosphat dehydrogenase from Escherichia coli. J. Biol. Chem. 218, 849–869Google Scholar
  35. Yamada, H., Okamoto, K., Kodama, K., Noguch, F., Tanaka, S. (1961) Enzymic studies on mannitol formation by Piricularia oryzae. J. Biochem. 49, 404–410PubMedGoogle Scholar
  36. Yamaguchi, T., Ikawa, T., Nisizawa, K. (1969) Pathway of mannitol formation during photosynthesis in brown algae. Plant Cell Physiol. 10, 425–440Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • D. F. E. Richter
    • 1
  • G. O. Kirst
    • 1
  1. 1.Fachbereich BiologieUniversität BremenBremen 33Federal Republic of Germany

Personalised recommendations