Advertisement

Letters in Mathematical Physics

, Volume 9, Issue 3, pp 231–234 | Cite as

Hidden-symmetry algebra for a supersymmetric gauge-invariant model

  • I. Ya. Aref'eva
  • I. V. Volovich
Article

Abstract

A new supersymmetric gauge-invariant model is proposed. It is shown that the hidden-symmetry algebra for this model is the Kac-Moody algebra without a center.

Keywords

Supersymmetric Gauge Theory Reduction Problem Hide Symmetry Loop Algebra Superspace Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LüscherM. and PohlmeyerK., Nucl. Phys. B137, 46 (1978); Brézin, E., Itzykson, C., Zinn-Justin, Z., and Zuber, J.-B., Phys. Lett. 82B, 442 (1979).CrossRefADSGoogle Scholar
  2. 2.
    JuliaB., in Dj.Sijacki et al. (eds.), Frontiers in Particle Physics, Vol. 83, World Scientific, Singapore, 1984; Dolan, L., ‘Kac-Moody Algebras and Exact Solvability in Hadron Physics’, Preprint RU 83/B/63 (1983); Chau, L. L., Ge, M. L., Sinha, A., and Wu, Y. S., Phys. Lett. 121B, 391 (1983); Ueno, K. and Nakamura, Y., Phys. Lett. 109B, 273 (1982); Devchand, C. and Fairlie, D. B., Nucl. Phys. B194, 232 (1982); Breitenlohner, P. and Maison, D., ‘Explicit and Hidden Symmetries of Dimensionally Reduced (Super) Gravity Theories', preprint MP1-PAE/PTh 1/84.Google Scholar
  3. 3.
    BohrH., GeM.-L., and VolovichI. V., ‘New Hidden Symmetries in 2-Dimensional Models’, ICTP, Trieste, preprint IC/84/128 (1984).Google Scholar
  4. 4.
    Aref'eva, I. Ya. and Volovich, I. V., Phys. Lett. B (to be published).Google Scholar
  5. 5.
    VolovichI. V., Lett. Math. Phys. 7, 517 (1983).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    DevchandC., Nucl. Phys. B238, 333 (1984).CrossRefADSGoogle Scholar
  7. 7.
    VladimirovV. S. and VolovichI. V., ‘Construction of Local and Nonlocal Conservation Laws for Nonlinear Field Equations’, ICTP, Trieste, preprint IC/84/128 (1984).Google Scholar
  8. 8.
    ChauL.-L., GeM.-L., and PopowitzZ., Phys. Rev. Lett. 52, 1940 (1984).MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    VolovichI. V., Theor. Math. Phys. 56, 153 (1983).Google Scholar
  10. 10.
    VladimirovV. S. and VolovichI. V., Theor. Math. Phys. 59, 3 (1984); 60, 169 (1984).zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    SohniusM., Nucl. Phys. B136, 461 (1978).MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    WittenE., Phys. Lett. 77B, 394 (1978).CrossRefGoogle Scholar
  13. 13.
    Harnad, J., Hurtubise, J., Légaré, M., and Shnider, S., ‘Constraint Equations and Field Equations in Supersymmetric N=3 Yang-Mills Theory’, preprint CRMA-1230, Montreal, 1984.Google Scholar
  14. 14.
    Aref'eva, I. Ya. and Volovich, I. V., ‘Higher Conservation Laws for Supersymmetric Gauge Theories, II’, Report presented at the Third Seminar ‘Quantum Gravity’, 23–25 October 1984, Moscow.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • I. Ya. Aref'eva
    • 1
  • I. V. Volovich
    • 1
  1. 1.Steklov Mathematical InstituteMoscow GSP-1U.S.S.R.

Personalised recommendations