Advertisement

Journal of Computer-Aided Molecular Design

, Volume 10, Issue 2, pp 153–164 | Cite as

The coordination of the catalytic zinc ion in alcohol dehydrogenase studied by combined quantum-chemical and molecular mechanics calculations

  • Ulf Ryde
Research Paper

Summary

The coordination number of the catalytic zinc ion in alcohol dehydrogenase has been studied by integrated ab initio quantum-chemical and molecular mechanics geometry optimisations involving the whole enzyme. A four-coordinate active-site zinc ion is 100–200 kJ/mol more stable than a five-coordinate one, depending on the ligands. The only stable binding site for a fifth ligand at the zinc ion is opposite to the normal substrate site, in a small cavity buried behind the zinc ion. The zinc coordination sphere has to be strongly distorted to accommodate a ligand in this site, and the ligand makes awkward contacts with surrounding atoms. Thus, the results do not support proposals attributing an important role to five-coordinate zinc complexes in the catalytic mechanism of alcohol dehydrogenase. The present approach makes it possible also to quantify the strain induced by the enzyme onto the zinc ion and its ligands; it amounts to 42–87 kJ/mol for four-coordinate active-site zinc ion complexes and 131–172 kJ/mol for five-coordinate ones. The four-coordinate structure with a water molecule bound to the zinc ion is about 20 kJ/mol less strained than the corresponding structure with a hydroxide ion, indicating that the enzyme does not speed up the reaction by forcing the zinc coordination sphere into a structure similar to the reaction intermediates.

Keywords

Geometry optimisation Five-coordination Reaction mechanism Geometry imposed by enzyme Protein strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pettersson, G., Crit. Rev. Biochem. Mol. Biol., 21 (1987) 349.Google Scholar
  2. 2.
    Brändén, C.I., Jörnvall, H., Eklund, H. and Furugren, B., In Boyer, P.D. (Ed.), The Enzymes, Vol. 11A, Academic Press, London, U.K., 1975, p. 103.Google Scholar
  3. 3.
    Eklund, H. and Brändén, C.I., In Spiro, T.G. (Ed.), Zinc Enzymes, Wiley, New York, NY, 1983, p. 124.Google Scholar
  4. 4.
    Eklund, H., Samama, J.-P., Wallén, L. and Brändén, C.I., J. Mol. Biol., 146 (1981) 561.PubMedGoogle Scholar
  5. 5.
    Al-Karadaghi, S., Cedergren-Zeppezauer, E.S., Petrantos, K., Hovmöller, S., Terry, H., Dauter, Z. and Wilson, K.S., Acta Crystallogr., D50 (1994) 793.Google Scholar
  6. 6.
    Schmidt, J., Chen, J., DeTraglia, M., Minkel, D. and McFarland, J.T., J. Am. Chem. Soc., 101 (1979) 3634.Google Scholar
  7. 7.
    Dunn, M.F., Dietrich, H., Macgibbon, A.K.H., Koerber, S.C. and Zeppezauer, M., Biochemistry, 21 (1982) 354.PubMedGoogle Scholar
  8. 8.
    Makinen, M.W., Maret, W. and Yim, M.B., Proc. Natl. Acad. Sci. USA, 80 (1983) 2584.PubMedGoogle Scholar
  9. 9.
    Makinen, M.W. and Wells, G.B., Met. Ions Biol. Syst., 22 (1987) 129.Google Scholar
  10. 10.
    Dutler, H. and Ambar, A., In Bertini, I., Drago, R.S. and Luchinat, C. (Eds.), The Coordination Chemistry of Metalloenzymes, Reidel, London, U.K., 1983, p. 135.Google Scholar
  11. 11.
    Dutler, H., Ambar, A. and Donatsch, J., In Bertini, I., Luchinat, C., Maret, W. and Zeppezauer, M. (Eds.), Zinc Enzymes, Birkhauser, Stuttgart, Germany, 1986, p. 471.Google Scholar
  12. 12.
    Merz, K.M., Hoffmann, R. and Dewar, M.J.S., J. Am. Chem. Soc., 111 (1989) 5636.Google Scholar
  13. 13.
    Maret, W. and Makinen, M.W., J. Biol. Chem., 266 (1991) 20636.PubMedGoogle Scholar
  14. 14.
    Dworschack, R.T. and Plapp, B.V., Biochemistry, 16 (1977) 2716.PubMedGoogle Scholar
  15. 15.
    Eklund, H., Jones, A. and Schneider, G., In Bertini, I., Luchinat, C., Maret, W. and Zeppezauer, M. (Eds.), Zinc Enzymes, Birkhauser, Stuttgart, Germany, 1986, p. 377.Google Scholar
  16. 16.
    Cedergren-Zeppezauer, E.S., In Bertini, I., Luchinat, C., Maret, W. and Zeppezauer, M. (Eds.), Zinc Enzymes, Birkhauser, Stuttgart, Germany, 1986, p. 393.Google Scholar
  17. 17.
    Eklund, H., Samama, J.-P. and Wallén, L., Biochemistry, 21 (1982) 4858.PubMedGoogle Scholar
  18. 18.
    Bertini, I., Gerber, M., Lanini, G., Maret, W., Rawer, S. and Zeppezauer, M., J. Am. Chem. Soc., 106 (1984) 1826.Google Scholar
  19. 19.
    Maret, W., Zeppezauer, M., Sanders-Loehr, J. and Loehr, T.M., Biochemistry, 22 (1983) 3202.PubMedGoogle Scholar
  20. 20.
    Maret, W., Shiemke, A.K., Wheeler, W.D., Loehr, T.M. and Sanders-Loehr, J., J. Am. Chem. Soc., 108 (1986) 6351.Google Scholar
  21. 21.
    Maret, W. and Zeppezauer, M., Biochemistry, 25 (1986) 1584.PubMedGoogle Scholar
  22. 22.
    Corwin, D.T., Fikar, R. and Koch, S.A., Inorg. Chem., 26 (1987) 3079.Google Scholar
  23. 23.
    Werth, M.T., Tang, S.-F., Formicka, G., Zeppezauer, M. and Hohnson, M.K., Inorg. Chem., 34 (1995) 218.Google Scholar
  24. 24.
    Hemmingsen, L., Bauer, R., Bjerrum, M.J., Zeppezauer, M., Adolph, H.W., Formicka, G. and Cedergren-Zeppezauer, E.S., Biochemistry, 34 (1995) 7145.PubMedGoogle Scholar
  25. 25.
    Boiwe, T. and Brändén, C.I., Eur. J. Biochem., 77 (1977) 173.PubMedGoogle Scholar
  26. 26.
    Sartorius, C., Dunn, M.F. and Zeppezauer, M., Eur. J. Biochem., 177 (1988) 493.PubMedGoogle Scholar
  27. 27.
    Andersson, I., Maret, W., Zeppezauer, M., Brown, R.D. and Koenig, S.H., Biochemistry, 20 (1981) 3424.PubMedGoogle Scholar
  28. 28.
    Andersson, I., Bauer, R. and Demeter, I., Inorg. Chim. Acta, 67 (1982) 53.Google Scholar
  29. 29.
    Maret, W., Zeppezauer, M., Desideri, A., Morpurgo, L. and Rotilio, G., FEBS Lett., 136 (1981) 72.PubMedGoogle Scholar
  30. 30.
    Makinen, M.W. and Yim, M.B., Proc. Natl. Acad. Sci. USA, 78 (1981) 6221.PubMedGoogle Scholar
  31. 31.
    Bertini, I. and Luchinat, C., Met. Ions Biol. Syst., 15 (1983) 101.Google Scholar
  32. 32.
    Bauer, R., Adolph, H.W., Andersson, I., Danielsen, E., Formicka, G. and Zeppezauer, M., Eur. Biophys. J., 20 (1991) 215.PubMedGoogle Scholar
  33. 33.
    Formicka, G., Zeppezauer, M., Fey, F. and Hüttermann, J., FEBS Lett., 309 (1992) 92.PubMedGoogle Scholar
  34. 34.
    Maret, W. and Vallee, B.L., Methods Enzymol., 226 (1993) 52.PubMedGoogle Scholar
  35. 35.
    Pocker, Y., Raymond, K.W. and Thompson, W.H., In Bertini, I., Luchinat, C., Maret, W. and Zeppezauer, M. (Eds.), Zinc Enzymes, Birkhauser, Stuttgart, Germany, 1986, p. 435.Google Scholar
  36. 36.
    Ryde, U., Int. J. Quantum Chem., 52 (1994) 1229.Google Scholar
  37. 37.
    Ryde, U., Protein Struct. Funct. Genet., 21 (1995) 40.Google Scholar
  38. 38.
    Singh, U.C. and Kollman, P.A., J. Comput. Chem., 7 (1986) 718.Google Scholar
  39. 39.
    Waszkowycz, B., Hillier, I.H., Gensmantel, N. and Payling, D.W., J. Chem. Soc., Perkin Trans. 2 (1990) 1259.Google Scholar
  40. 40.
    Waszkowycz, B., Hillier, I.H., Gensmantel, N. and Payling, D.W., J. Chem. Soc., Perkin Trans. 2 (1991) 225.Google Scholar
  41. 41.
    Waszkowycz, B., Hillir, I.H., Gensmantel, N. and Payling, D.W., J. Chem. Soc., Perkin Trans. 2 (1991) 1819.Google Scholar
  42. 42.
    Waszkowycz, B., Hillier, I.H., Gensmantel, N. and Payling, D.W., J. Chem. Soc., Perkin Trans. 2 (1991) 2025.Google Scholar
  43. 43.
    Böttcher, C.J.F., The Theory of Electric Polarization, Elsevier, Amsterdam, The Netherlands, 1973, p. 110.Google Scholar
  44. 44.
    Halgren, T.A., J. Am. Chem. Soc., 114 (1992) 7827.Google Scholar
  45. 45.
    Ahlrichs, R., Bär, M., Häser, M., Horn, H. and Kölmel, C., Chem. Phys. Lett., 162 (1989) 165.Google Scholar
  46. 46.
    Teleman, O. and Jönsson, B., J. Comput. Chem., 7 (1986) 58.Google Scholar
  47. 47.
    Huzinaga, S., J. Chem. Phys., 42 (1965) 1293.Google Scholar
  48. 48.
    Wachters, A.J.H., J. Chem. Phys., 52 (1970) 1033.Google Scholar
  49. 49.
    Al-Karadaghi, S., Cedergren-Zeppezauer, E.S., Dauter, Z. and Wilson, K.S., Acta Crystallogr., D51 (1995) 805.Google Scholar
  50. 50.
    Bellido, M.N. and Rullmann, J.A.C., J. Comput. Chem., 10 (1989) 479.Google Scholar
  51. 51.
    Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.Google Scholar
  52. 52.
    Lijas, A., Carlsson, M., Håkansson, K., Lindahl, M., Svensson, L.A. and Wehnert, A., Phil. Trans. R. Soc. London Ser. A, 340 (1992) 301.Google Scholar
  53. 53.
    Fraústo da Silvia, J.J.R. and Williams, R.J.P., The Biological Chemistry of the Elements, Clarendon Press, Oxford, U.K., 1991, pp. 182–184.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1996

Authors and Affiliations

  • Ulf Ryde
    • 1
  1. 1.Department of Theoretical ChemistryUniversity of Lund, Chemical CentreLundSweden

Personalised recommendations