Letters in Mathematical Physics

, Volume 24, Issue 2, pp 93–102

Quantized universal enveloping superalgebra of type Q and a super-extension of the Hecke algebra

  • G. I. Olshanski


The quantized universal enveloping algebra Uq(q(n)) of the ‘strange’ Lie superalgebra q(n) and a super-analogue HCq(N) of the Hecke algebra Hq(N) are constructed. These objects are in a duality similar to the known duality between Uq(gl(n)) and Hq(N).

Mathematics Subject Classifications (1991)

17A70 17B35 81R50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergman, G. M., Adv. in Math. 29, 178 (1978).Google Scholar
  2. 2.
    Drinfeld, V. G., in Proc. Intern. Congr. Math., Berkeley, vol. 1, Academic Press, New York, 1987, pp. 798–820.Google Scholar
  3. 3.
    Drinfeld, V. G., in Quantum Groups (Proc. Conf. held in Euler Intern. Math. Inst., Leningrad, 1990), to appear in Springer Lect. Notes Math.Google Scholar
  4. 4.
    Gould, M. D., Zhang, R. B., and Bracken, A. J., Rev. Math. Phys. 3, 223 (1991).Google Scholar
  5. 5.
    Jimbo, M., Lett. Math. Phys. 11, 247 (1986).Google Scholar
  6. 6.
    Nazarov, M. L., in the same collection as [3].Google Scholar
  7. 7.
    Penkov, I. B., Functional Anal. Appl. 20, 30 (1986).Google Scholar
  8. 8.
    Reshetikhin, N. Yu., Takhtajan, L. A., and Faddeev, L. D., Leningrad Math. J. 1, 193 (1990).Google Scholar
  9. 9.
    Sergeev, A. N., Functional Anal. Appl. 18(1), 70 (1984).Google Scholar
  10. 10.
    Sergeev, A. N., Math. USSR—Sb. 51, 419 (1985).Google Scholar
  11. 11.
    Takeuchi, M., J. Math. Soc. Japan 42, 605 (1990).Google Scholar
  12. 12.
    Weyl, H., The Classical Groups. Their Invariants and Representations, Princeton Univ. Press, Princeton, NJ, 1939.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • G. I. Olshanski
    • 1
  1. 1.Institute for Problems of Information Transmission, GSP-4MoscowRussia

Personalised recommendations