Advertisement

Journal of Sol-Gel Science and Technology

, Volume 6, Issue 1, pp 7–55 | Cite as

Invited review “sol-gel” preparation of high temperature superconducting oxides

  • Masato Kakihana
Article

Abstract

This review article focuses on the sol-gel preparation of high temperature superconducting oxides wherein different classes of gel technologies were utilized. These involve: 1) the sol-gel route based upon hydrolysis-condensation of metal-alkoxides, 2) the gelation route based upon concentration of aqueous solutions involving metal-chelates, often called as “chelate gel” or “amorphous chelate” route, and 3) the organic polymeric gel route. This paper reviews the current status of these sol-gel processes, and illustrates the underlying chemistry involved in each sol-gel technology. It is demonstrated that the chemical homogeneity of the gel is often disturbed by the differences in the chemistries of the cations. Prior to gelation the starting precursor solution containing various forms of metal-complexes must be chemically modified to overcome this problem. Illustration of a variety of strategies for success in obtaining a homogeneous multicomponent gel with no precipitation is focal point of this review article.

Keywords

sol-gel method high temperature superconducting oxides multicomponent gel chemical homogeneity metal alkoxides amorphous chelate gel organic polymeric gel polymerized complex method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Sakka, H. Kozuka, and H. Zhuang, Mol. Cryst. Liq. Cryst. 184, 359 (1990).Google Scholar
  2. 2.
    B.G. Bagley, W.E. Quinn, S.A. Khan, P. Barboux, and J.M. Tarascon, J. Non Cryst. Solids 121, 454 (1990).Google Scholar
  3. 3.
    S. Hirano and T. Hayashi, Thermochimica Acta 174, 169 (1991).Google Scholar
  4. 4.
    J.M. González-Calbet, Vallet-Regi, and X. Obradors in Studies of High Temperature Superconductors; Advances in Research and Applications, edited by A. Narlikar (Nova Science Pub. New York, 1990) 6 p. 369.Google Scholar
  5. 5.
    M. Kakihana, M. Yoshimura, H. Mazaki, and H. Yasuoka, Rep. Res. Lab. Eng. Mater., Tokyo Inst. Tech. 17, 63 (1992).Google Scholar
  6. 6.
    A.C. Vajpei and G.S. Upadhyaya, Key Eng. Mater. 75–76, 43 (1992).Google Scholar
  7. 7.
    M. Kubecková and V. Matéjec, Ceramics-Silikáty 37, 169 (1993).Google Scholar
  8. 8.
    C.N.R. Rao, R. Nagarajan, and R. Vijayaraghavan, Supercond. Sci. Technol. 6, 1 (1993).Google Scholar
  9. 9.
    A. Bourdillon and N.X. Tan Bourdillon in High Temperature Superconductors; Processing and Science, Ch. IV (Academic Press, Inc., San Diego, 1994), p. 108.Google Scholar
  10. 10.
    W.S. Clabaugh, E.M. Swiggard, and R. Gilchrist, J. Res. Natl. Bur. Std. 56, 289 (1956).Google Scholar
  11. 11.
    P.P. Phule and S.H. Risbud, J. Mater. Sci. 25, 1169 (1990).Google Scholar
  12. 12.
    D. Hennings and W. Mayr, J. Solid State Chem 26, 329 (1978).Google Scholar
  13. 13.
    J.T. Davis and E.K. Rideal in Interfacial Phenomena, (Academic Press, New York, 1963).Google Scholar
  14. 14.
    I.A. Aksay in Ceramics: Today and Tomorrow, edited by S. Naka, N. Soga, and S. Kume, The Ceramic Society of Japan, 71 (1986).Google Scholar
  15. 15.
    F.F. Lange, B.I. Davis, and E. Wright, J. Amer. Ceram. Soc. 69, 66 (1986).Google Scholar
  16. 16.
    Y. Hirata and I.A. Aksay in Ceramic Microstructure 86, Role of Interfaces, edited by J.A. Pask and A.G. Evans (Plenum Press, 1987), p. 611.Google Scholar
  17. 17.
    L.M. Sheppard, Amer. Ceram. Soc. Bull. 68, 979 (1989).Google Scholar
  18. 18.
    A.C. Pierre, Ceramic Bulletin 70, 1281 (1991).Google Scholar
  19. 19.
    Surface and Colloid Chemistry in Advanced Ceranics Processing, edited by R.J. Pugh and L. Bergström, (Marcel Dekker, Inc., New York, 1994).Google Scholar
  20. 20.
    P. Colomban, Ceramics International 15, 23 (1989).Google Scholar
  21. 21.
    B.J.J. Zelinski and D.R. Uhlmann, J. Phys. Chem. Solids 42, 1069 (1985).Google Scholar
  22. 22.
    H. Dislich, J. Non-Cryst. Solids 73, 599 (1985).Google Scholar
  23. 23.
    D.P. Parlow and B.E. Yoldas, J. Non-Cryst. Solids, 46, 153 (1981).Google Scholar
  24. 24.
    C.D. Chandler, C. Roger, and M.J. Hampden-Smith, Chem. Rev. 93, 1205 (1993).Google Scholar
  25. 25.
    D.C. Bradley, Chem. Rev. 89, 1317 (1989).Google Scholar
  26. 26.
    C.J. Brinker and G.W. Scherer in Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Boston, 1990).Google Scholar
  27. 27.
    L.C. Klein in Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specially Shapes (Noyes Publications, Park Ridge, 1988).Google Scholar
  28. 28.
    P. Cousin and R.A. Ross, Mater. Sci. Eng. A 90, 1027 (1990).Google Scholar
  29. 29.
    L.L. Hench and J.K. West, Chem. Rev. 90, 33 (1990).Google Scholar
  30. 30.
    W.G.Van der Sluys and A.P. Sattleberger, Chem. Rev. 90, 1027 (1990).Google Scholar
  31. 31.
    J. Livage, M. Henry, and C. Sanchez, Prog. Solid State Chem. 18, 259 (1988).Google Scholar
  32. 32.
    D.C. Bradley, R.C. Mehrotra, and D.P. Gaur in Metal Alkoxides (Academic Press, London, 1978).Google Scholar
  33. 33.
    A.R. West in Solid State Chemistry and Its Applications (Wiley, New York, 1989).Google Scholar
  34. 34.
    K.G. Caulton and L.G. Hubert-Pfalzgraf, Chem. Rev. 90, 969 (1990).Google Scholar
  35. 35.
    K.S. Mazdiyasni, Powder Synthesis from Metal Organic Precursors, Ceramics Int. 8, 42 (1982).Google Scholar
  36. 36.
    B.E. Yoldas, J. Amer. Ceram. Soc. 65, 387 (1977).Google Scholar
  37. 37.
    S. Sakka and K. Kamiya, Glasses from Metal Alcoholates, J. Non Crystalline Solids 42, 403 (1980).Google Scholar
  38. 38.
    K.S. Mazdiyasni, C.T. Lynch, and J.S. Smith, Inorg. Chem. 5, 342 (1966).Google Scholar
  39. 39.
    S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Solids 89, 206 (1987).Google Scholar
  40. 40.
    C. Sanchez, J. Livage, M. Henry, and F. Babonneau, J. Non-Cryst. Solids 100, 65 (1988).Google Scholar
  41. 41.
    B.E. Yoldas, J. Mater. Sci. 14, 1843 (1979).Google Scholar
  42. 42.
    B.E. Yoldas, J. Mater. Sci. 12, 1203 (1977).Google Scholar
  43. 43.
    J.F. Campion, J.K. Maurin, D.A. Payne, and S.R. Wilson, Inorg. Chem. 30, 3244 (1991).Google Scholar
  44. 44.
    Z. Xu, H.K. Chae, M.H. Frey, and D.A. Payne, Mater. Res. Soc. Symp. Proc. 271, 339 (1992).Google Scholar
  45. 45.
    D.J. Eichorts and D.A. Payne, Mater. Res. Soc. Symp. Proc. 121, 773 (1988).Google Scholar
  46. 46.
    D.J. Eichorst, D.A. Payne, and S.R. Wilson, Inorg. Chem. 29, 1458 (1990).Google Scholar
  47. 47.
    S. Hirano and K. Kato, J. Non-Cryst. Solids 100, 538 (1988).Google Scholar
  48. 48.
    S. Hirano, T. Yogo, and K. Kikuta, J. Ceram. Soc. Japan 99, 1026 (1991).Google Scholar
  49. 49.
    R.C. Mehrotra, Mater. Res. Soc. Symp. Proc. 121, 81 (1988).Google Scholar
  50. 50.
    C.F. Baes and R.E. Mesmer in The Hydrolysis of Cations (Wiley, New York, 1976).Google Scholar
  51. 51.
    D.L. Kepert in The Early Transition Metals (Academic Press, London, 1972).Google Scholar
  52. 52.
    C.K. Jorgensen in Inorganic Complexes (Academic Press, London, 1963).Google Scholar
  53. 53.
    C.M. FlynnJr., Chem. Rev. 84, 31 (1984).Google Scholar
  54. 54.
    R.L. Gustafson, J. Chem. Educ. 37, 603 (1960).Google Scholar
  55. 55.
    J. Kragten, Atlas of Metal-Ligand Equilibria in Aqueous Solution (Ellis Horwood Limited, Wiley, New York, 1978).Google Scholar
  56. 56.
    J. Kragten, Talanta 24, 483 (1977).Google Scholar
  57. 57.
    A. Ringbom in Complexation in Analytical Chemistry (Interscience, New York, 1963).Google Scholar
  58. 58.
    O.Van der Biest, J. Kwarciak, D. Dierickx, M. Dhalle, W. Boon, and Y. Bruynseraede, Physica C 190, 119 (1991).Google Scholar
  59. 59.
    M.P. Pechini, U.S. Patent No.3 330, 697, July (1967).Google Scholar
  60. 60.
    L.G. Sillén and A.E. Martell (eds.) in Stability Constants of Metal-Ion Complexes, Spec. Publ. Nos. 17 and 25, (Chemical Society, London 1964 and 1972).Google Scholar
  61. 61.
    F.A.Von Schröder, J.W. Bats, H. Fuess, and E.J. Zehnder, Z. Anorg. Chem. 499, 181 (1983).Google Scholar
  62. 62.
    D. Knetsch and W.L. Groenveld, Inorg. Chim. Acta 7, 81 (1973).Google Scholar
  63. 63.
    B.M. Antti, B.K.S. Lundberg, and N. Ingri, Acta Chem. Scand. 26, 3984 (1972).Google Scholar
  64. 64.
    B.M. Antti, Acta Chem. Scand. A30, 405 (1976).Google Scholar
  65. 65.
    H.U. Anderson, M.J. Pennell, and J.P. Guha in Advances in Ceramics: Ceramic Powder Science Volume 21, edited by G.L. Messing, K.S. Mazdiyasni, J.W. McCauley, and R.A. Harber, Amer. Ceram. Soc. (Westerville, OH, 1987), p. 91.Google Scholar
  66. 66.
    S.C. Zhang, G.L. Messing, W. Huebner, and M.M. Coleman, J. Mater. Res. 5, 1806 (1990).Google Scholar
  67. 67.
    S.G. Cho, P.F. Johnson, and R.A. Condrate, J. Mater. Sci. 25, 4738 (1990).Google Scholar
  68. 68.
    O. Uchiyama, M. Kakihana, M. Arima, M. Yashima, Y. Suzuki, and M. Yoshimura, Advanced Materials 93, I/A: Ceramics, Powders, Corrosoin and Advanced Processing, edited by N. Mizutani, et al. Trans. Mater. Res. Soc. Jpn. 14A, 743 (1994).Google Scholar
  69. 69.
    L.W. Tai and P.A. Lessing, J. Mater. Res. 7, 502 (1992).Google Scholar
  70. 70.
    N.G. Eror and H.U. Anderson in Better Ceramics Through Chemistry II, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich, Mater. Res. Soc. Proc. 73, 571 (1986).Google Scholar
  71. 71.
    P.A. Lessing, Amer. Ceram. Soc. Bull. 168, 1002 (1989).Google Scholar
  72. 72.
    L.W. Tai and P.A. Lessing, J. Mater. Res. 7, 511 (1992).Google Scholar
  73. 73.
    K.O. Budd and D.A. Payne in Better Ceramics Through Chemistry, edited by C.J. Brinker, D.E. Clark and D.R. Ulrich, Mater. Res. Soc. Proc. 32, 239 (1984).Google Scholar
  74. 74.
    H. Tomita and T. Goto, Polymer 34, 2277 (1993).Google Scholar
  75. 75.
    H. Tomita and T. Goto, J. Polym. Sci. 51, 1151 (1994).Google Scholar
  76. 76.
    M.A. Gülgün, O.O. Popoola, and W.M. Kriven, J. Mater. Res. 10 (1995), in press.Google Scholar
  77. 77.
    M.A. Gülgün, O.O. Popoola, and W.M. Kriven, J. Amer. Ceram. Soc. 77, 531 (1994).Google Scholar
  78. 78.
    M.A. Gülgün and W.M. Kriven, a preprint submitted to J. Amer. Ceram. Soc. (1995).Google Scholar
  79. 79.
    R.C. Mehrotra, Adv. Inorg. Chem. Radiochem. 26, 269 (1983).Google Scholar
  80. 80.
    T. Kobayashi, K. Nomura, F. Uchikawa, T. Masumi, and Y. Uehara, Japn. J. Appl. Phys. 27, L1880 (1988).Google Scholar
  81. 81.
    G. Kordas, J. Non Cryst. Solids 121, 436 (1990).Google Scholar
  82. 82.
    G. Kordas and M.R. Teepe, Appl. Phys. Lett. 57, 1461 (1990).Google Scholar
  83. 83.
    S. Wu, K. Kramer and G. Kordas, J. Electron. Mater. 17, 135 (1988).Google Scholar
  84. 84.
    S. Kramer, G. Kordas, J. McMillan, G. Hilton, and D.Van Harligen, Appl. Phys. Lett. 53, 156 (1988).Google Scholar
  85. 85.
    K. Matsumura, H. Nobumasa, K. Shimizu, T. Arima, Y. Kitano, M. Tanaka, and K. Sushida, Japan. J. Appl. Phys. 28, L1797 (1989).Google Scholar
  86. 86.
    G. Moore, S. Kramer, and G. Kordas, Mater. Lett. 7, 415 (1989).Google Scholar
  87. 87.
    S. Shibata, T. Kitagawa, H. Okazaki, T. Kimura, and T. Murakami, Japan. J. Appl. Phys. 27, L53 (1988).Google Scholar
  88. 88.
    S. Shibata, T. Kitagawa, H. Okazaki, and T. Kimura, Jap. J. Appl. Phys. 27, L646 (1988).Google Scholar
  89. 89.
    P. Catania, N. Hovnanian, L. Cot, M. Pham Thi, R. Kormann, and J.P. Ganne, Mater. Res. Bull. 25, 631 (1990).Google Scholar
  90. 90.
    H. Murakami, S. Yaegashi, J. Nishino, Y. Shiohara, and S. Tanaka, J. Japan. Appl. Phys. 29, L445 (1990).Google Scholar
  91. 91.
    H. Murakami, S. Yaegashi, J. Nishino, Y. Shiohara, and S. Tanaka, J. Japan. Appl. Phys. 29, 2715 (1990).Google Scholar
  92. 92.
    N.El Khokh, R. Papiernik, L.G. Hubert-Pfalzgraf, F. Chaput, and J.P. Boilot, J. Mater. Sci. Lett. 8, 762 (1989).Google Scholar
  93. 93.
    Y. Masuda, T. Tateishi, K. Matsubara, R. Ogawa, and Y. Kawate, J. Japan. Appl. Phys. 30, 1390 (1991).Google Scholar
  94. 94.
    Y. Masuda, R. Ogawa, Y. Kawate, K. Matsubara, T. Tateishi, and S. Sakka, J. Mater. Res. 8, 693 (1993).Google Scholar
  95. 95.
    P. Ravindranathan, S. Komarneni, A. Bhalla, R. Roy, and L.E. Cross, J. Mater. Res. 3, 810 (1988).Google Scholar
  96. 96.
    P. Ravindranathan, S. Komarneni, A. Bhalla, and R. Roy, Mater. Lett. 10, 153 (1990).Google Scholar
  97. 97.
    W. Reith, C. Allgeier, K. Andres, J. Heise, R. Hoben, A.K. Klehe, R. Kleiner, C. Kowal, A. Moise, P. Muller, and J.S. Schilling, Physica C 162–164, 109 (1989).Google Scholar
  98. 98.
    S.S. Pak, F.C. Montgomery, D.M. Duggan, K.C. Chen, K.S. Mazdiyasni, P.K. Tsai, L.M. Paulius, and M.B. Maple, J. Amer. Ceram. Soc. 75, 2268 (1992).Google Scholar
  99. 99.
    K.M. Stephens, D.A. Robinson, A. Alvanipour, W.S. Hinton, Morrobel-SosaA. Physica C 168, 351 (1990).Google Scholar
  100. 100.
    S. Hirano, T. Hayashi, M. Miura, and H. Tomonaga, Bull. Chem. Soc. Japan 62, 888 (1989).Google Scholar
  101. 101.
    S. Hirano, T. Hayashi, and H. Tomonaga, Japan. J. Appl. Phys. 29, L40 (1990).Google Scholar
  102. 102.
    H.S. Horowitz, S.J. McLain, A.W. Sleight, J.D. Druliner, P.L. Gai, M.J.Van Kavelaar, J.L. Wagner, B.D. Biggs, and S.J. Poon, Science 243, 66 (1989).Google Scholar
  103. 103.
    S. Katayama and M. Sekine, J. Mater. Res 6, 1629 (1991).Google Scholar
  104. 104.
    S. Katayama and M. Sekine, J. Mater. Chem. 1, 1031 (1991).Google Scholar
  105. 105.
    S. Koriyama, T. Ikemachi, T. Kawano, H. Yamauchi, and S. Tanaka, Physica C 185–189, 519 (1991).Google Scholar
  106. 106.
    Y. Masuda, R. Ogawa, Y. Kawate, K. Matsubara, T. Tateishi, and S. Sakka, J. Mater. Res. 7, 819 (1992).Google Scholar
  107. 107.
    T. Monde, H. Kozuka, and S. Sakka, Chem Lett. 2, 287 (1988).Google Scholar
  108. 108.
    H. Zheng and J.D. Mackenzie, Mater. Lett. 7, 182 (1988).Google Scholar
  109. 109.
    T. Monde and S. Sakka, Proc. MRS Int. Meet. on Advanced Materials 6, 233 (1989).Google Scholar
  110. 110.
    T. Nonaka, K. Kaneko, T. Hasegawa, K. Kishio, Y. Takahashi, K. Kobayashi, K. Kitazawa, and K. Fueki, Jpn. J. Appl. Phys. 27, L867 (1988).Google Scholar
  111. 111.
    M. Guglielmi and G. Carturan, J. Non-Cryst. Solids 100, 16 (1988).Google Scholar
  112. 112.
    R. Fiedler, H. Follner, Monatsh. Chem. 108, 319 (1977).Google Scholar
  113. 113.
    H. Follner, Monatsh. Chem. 103, 1438 (1972).Google Scholar
  114. 114.
    O. Poncelet, L.G. Hubert-Pfalzgraf, L. Toupet, J.C. Daran, Polyhedron 10, 2045 (1991).Google Scholar
  115. 115.
    S. Katayama and M. Sekine, J. Mater. Res. 5, 683 (1990).Google Scholar
  116. 116.
    C.H. BrubakerJr. and M. Nicholas, J. Inorg. Nucl. Chem. 27, 59 (1965).Google Scholar
  117. 117.
    S.C. Goel, K.S. Kramer, P.C. Gibbons, and W.E. Buhro, Inorg. Chem. 28, 3620 (1989).Google Scholar
  118. 118.
    S.C. Goel, K.S. Kramer, M.Y. Chiang, and W.E. Buhro, Polyhedron 9, 611 (1990).Google Scholar
  119. 119.
    C.D.E. Lakeman and D.A. Payne, Mater. Chem. Phys. 38, 305 (1994).Google Scholar
  120. 120.
    N.N. Sauer, E. Garcia, K.V. Salazar, R.R. Ryan, J.A. Martin, J. Am. Chem. Soc. 112, 1524 (1990).Google Scholar
  121. 121.
    G.R. Lee and J.A. Crayston, Adv. Mater. 5, 434 (1993).Google Scholar
  122. 122.
    C. Guizard, N. Cygankiewicz, A. Larbot, and L. Cot, J. Non-Cryst. Solids 82, 86 (1986).Google Scholar
  123. 123.
    S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Solids 89, 206 (1987).Google Scholar
  124. 124.
    I. Laaziz, A. Larbot, A. Julbe, C. Guizard, and L. Cot, J. Non-Cryst. Solids 98, 393 (1992).Google Scholar
  125. 125.
    C. Sanchez and J. Livage, New J. Chem. 14, 513 (1990).Google Scholar
  126. 126.
    H. Zheng, M.W. Colby, and J.D. Mackenzie in Better Ceramics Through Chemistry III, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich, 537 (1988).Google Scholar
  127. 127.
    L.F. Admaiai, L. Daza, P. Grange, and B. Delmon, J. Mater. Sci. Lett. 13, 668 (1994).Google Scholar
  128. 128.
    S. Hirano, T. Hayashi, and M. Miura, J. Amer. Ceram. Soc. 73, 885 (1990).Google Scholar
  129. 129.
    G. Kordas, G.A. Moore, J.D. Jorgensen, F. Rotella, R.L. Hitterman, K.J. Volin, and J. Faber, J. Mater. Chem. 1, 175 (1991).Google Scholar
  130. 130.
    G. Kordas, G.A. Moore, M.B. Salamon, and J.B. Hayter, J. Mater. Chem. 1, 181 (1991).Google Scholar
  131. 131.
    G. Kordas, M.R. Teepe, D.S. Kenzer, and B. Moon, J. Mater. Chem. 2, 467 (1992).Google Scholar
  132. 132.
    S. Katayama and M. Sekine, Better Ceramics Through Chemistry IV, Mater: Res. Soc. Proc. Volume 180, edited by B.J.J. Zelinski, C.J. Brinker, D.E. Clark, and D.R. Ulrich (Material Research Society, Pittsburgh, 1990), p. 897.Google Scholar
  133. 133.
    S. Katayama and M. Sekine, Appl. Phys. Lett. 60, 118 (1992).Google Scholar
  134. 134.
    M.W. Rupich, B. Lagos, and J.P. Hachey, Appl. Phys. Lett. 55, 2447 (1989).Google Scholar
  135. 135.
    M.W. Rupich, Y.P. Liu, and J. Ibechem, Appl. Phys. Lett. 60, 1384 (1992).Google Scholar
  136. 136.
    M.W. Rupich, Y.P. Liu, J. Ibechem, and J.P. hachey, J. Mater. Res. 8, 1487 (1993).Google Scholar
  137. 137.
    M.W. Rupich, S.F. Cogan, B. Lagos, and J.P. Hachey in High Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by D. Christen, J. Narayan, and L. Schneemeyer, Mater. Res. Soc. Symp. Proc. 169 (Pittsburgh, PA, 1990), p. 1209.Google Scholar
  138. 138.
    L.F. Admaiai, P. Grange, B. Delmon, M. Cassart, J.P. Issi, J. Mater. Sci. 29, 5817 (1994).Google Scholar
  139. 139.
    M. Awano, K. Kani, Y. Takao, and H. Takagi, J. Ceram. Soc. Japan 100, 434 (1992).Google Scholar
  140. 140.
    P. Barboux, J.M. Tarascon, L.H. Greene, G.W. Hull, and B.G. Bagley, J. Appl. Phys. 63, 2725 (1988).Google Scholar
  141. 141.
    P. Catania, N. Hovnanian, and L. Cot, Eurp. J. Solid State Inorg. Chem. 27, 659 (1990).Google Scholar
  142. 142.
    F. Chen, S. Luo, N. Li, C. Li, B. Jie, G. Li, and D. Yin, Mod. Phys. Lett. B3, 301 (1989).Google Scholar
  143. 143.
    R.E. Edwards, T.C. Prentice, D.F. Rush, K.T. Scott, and D.L. Segal, Ceramic Notes 89, 32 (1990).Google Scholar
  144. 144.
    T. Goto, T. Sugishita, and K. Kojima, Physica C 171, 441 (1990).Google Scholar
  145. 145.
    S.A. Kahn, B.G. Bagley, P. Barboux, and F.E. Torres, Mater. Res. Soc. Symp. Proc. 55, 95 (1989).Google Scholar
  146. 146.
    S.A. Kahn, B.G. Bagley, P. Barboux, and F.E. Torres, J. Non-Cryst. Solids 110, 14 (1989).Google Scholar
  147. 147.
    M.L. Kullberg, M.T. Lanagan, W. Wu, and R.B. Poeppel, Supercond. Sci. Technol. 4, 337 (1991).Google Scholar
  148. 148.
    I. Valente, C. Sanchez, M. Henry, and J. Livage, Ind. Ceram. 836, 193 (1989).Google Scholar
  149. 149.
    J.G. Wang and R.T. Yang, J. Appl. Phys. 67, 2160 (1990).Google Scholar
  150. 150.
    C.H. Kwon, S.M. Cho, Y.H. Choi, B.K. Moon, D.Y. Yang, and S.T. Kim, Physica C 185–189, 2107 (1991).Google Scholar
  151. 151.
    L. Marta, L. Ciontea, T. Petrisor, M. Zaharescu, D. Crisan, and I. Haiduc, J. Sol-Gel Sci. & Technology 2, 437 (1994).Google Scholar
  152. 152.
    A. Nozue, H. Nasu, K. Kamiya, and K. Tanaka, J. Mater. Sci. 26, 4427 (1991).Google Scholar
  153. 153.
    C.E. Rice, Van Dover, and G.J. Fisanick, Appl. Phys. Lett. 51, 1842 (1987).Google Scholar
  154. 154.
    S. Sakka, J. Non Cryst. Solids 121, 417 (1990).Google Scholar
  155. 155.
    K. Tanaka, A. Nozue, and K. Kamiya, Japn. J. Appl. Phys. 28. L934 (1989).Google Scholar
  156. 156.
    K. Tanaka, A. Nozue, and K. Kamiya, J. Mater. Sci. 25, 3551 (1990).Google Scholar
  157. 157.
    T. Umeda, H. Kozuka, and S. Sakka, Adv. Ceram. Mater. 3, 520 (1988).Google Scholar
  158. 158.
    T. Umeda, H. Kozuka, and S. Sakka, J. Ceram. Soc. Jpn. 98, 709 (1990).Google Scholar
  159. 159.
    H. Kozuka, T. Umeda, J.S. Jin, and S. Sakka in Better Ceramics Through Chemistry III, edited by J.C. Brinker, D.E. Clark, and D.R. Ulrich, Mater. Res. Soc. Symp. Proc. 121 (Pittsburgh, PA, 1988), p. 639.Google Scholar
  160. 160.
    H. Kozuka, T. Umeda, J.S. Jin, F. Miyaji, and S. Sakka, J. Ceram. Soc. Jpn. 96, 355 (1988).Google Scholar
  161. 161.
    S. Sakka, H. Kozuka, and T. Umeda, J. Ceram. Soc. Jpn. 96, 468 (1988).Google Scholar
  162. 162.
    H. Kozuka and S. Sakka, Bull. Jpn. Inst. Metals 27, 784 (1988).Google Scholar
  163. 163.
    S. Fujihara, H. Zhuang, T. Yoko, H. Kozuka, and S. Sakka, J. Mater. Res. 7, 2355 (1992).Google Scholar
  164. 164.
    S. Fujihara, H. Kozuka, T. Yoko, and S. Sakka, J. Sol-Gel Sci. Tec. 1, 133 (1994).Google Scholar
  165. 165.
    A. Kareiva, M. Karppinen, and L. Niinistö, J. Mater. Chem. 4, 1267 (1994).Google Scholar
  166. 166.
    Y. Masuda, R. Ogawa, Y. Kawate, T. Tateishi, and N. Hara, J. Mater. Res. 7, 292 (1992).Google Scholar
  167. 167.
    P.L. Steger and X.Z. Wang, Physica C 213, 433 (1993).Google Scholar
  168. 168.
    A. Wagner, and G. Gritzner, Supercond. Sci. Technol. 7, 89 (1994).Google Scholar
  169. 169.
    Q. Xu, L. Bi, D. Peng, G. Meng, G. Zhou, Z. Mao, C. Fan, and Y. Zhang, Supercond. Sci. Technol. 3, 564 (1990).Google Scholar
  170. 170.
    H. Zhuang, H. Kozuka, and S. Sakka, Japan. J. Appl. Phys. 28, L1805 (1989).Google Scholar
  171. 171.
    H. Zhuang, H. Kozuka, and S. Sakka, J. Mater. Sci. 25, 4762 (1990).Google Scholar
  172. 172.
    H. Zhuang, H. Kozuka, T. Yoko, and S. Sakka, Japan. J. Appl. Phys. 29, L1107 (1990).Google Scholar
  173. 173.
    D.H.A. Blank, H. Kuridhof, and Flokstra, J. Phys. D: Appl. Phys. 21, 226 (1988).Google Scholar
  174. 174.
    F. Celani, A. Saggese, V. Calzona, M. Putti, L. Liberatori, S. Pace, Polichetti, and R. Scafuro, Physica C 162–164, 903 (1989).Google Scholar
  175. 175.
    J-H. Choy, J-S. Yoo, J-C. Park, S-G. Kang, W. Kim, and S-G. Kang, Physica C 185–189, 511 (1991).Google Scholar
  176. 176.
    C-T. Chu and B. Dunn. J. Am. Ceram. Soc. 70, C375 (1987).Google Scholar
  177. 177.
    C.T. Chu and B. Dunn, J. Mater. Res. 5, 1819 (1990).Google Scholar
  178. 178.
    S. Darracq, A.C. Pierre, and J. Etourneau, Bull. Soc. Chim. France 2, 175 (1989).Google Scholar
  179. 179.
    P.S. Devi and H.S. Maiti, J. Solid State Chem. 109, 35 (1994).Google Scholar
  180. 180.
    P.S. Devi and H.S. Maiti, J. Mater. Res. 9, 1357 (1994).Google Scholar
  181. 181.
    B. Dunn, C.T. Chu, L-W. Zhou, J.R. Cooper, and G. Gruner, Adv. Ceramic Mater. 2, 343 (1987).Google Scholar
  182. 182.
    J. Fransaer, T. Eggermont, O. Arkens, J.P. Celis, L. Delaey, J.R. Roos, and O.Van der Biest, Silicates Industries 11–12, 195 (1989).Google Scholar
  183. 183.
    A. Gholinia and F.R. Sale, Inst. Phys. Conf. Ser. 130, 213 (1993).Google Scholar
  184. 184.
    J.E. Gordon, R.A. Fisher, S. Kim, and N.E. Phillips, Physica C 162–164, 484 (1989).Google Scholar
  185. 185.
    E.A. Hayri, M. Greenblatt, K.V. Ramanujachary, M. Nagano, J. Oliver, M.J. Miceli, and Gerhardt, J. Mater. Res. 4, 1099 (1989).Google Scholar
  186. 186.
    H.S. Horowitz, R.K. Bordia, C.C. Torardi, K.J. Morrissey, M.A. Subramanian, E.M. McCarron, J.B. Michel, T.R. Askew, R.B. Flippen, J.D. Bolt, and U. Chowdhry, Solid State Ionics, 32/33, 1087 (1989).Google Scholar
  187. 187.
    J-H. Jean, J. Mater. Sci. Lett. 8, 751 (1989).Google Scholar
  188. 188.
    A. Junod, A. Bezinge, D. Cattani, M. Decroux, D. Eckert, M. François, A. Hewat, J. Muller, and K. Yvon, Helvetica Phys. Acta 61, 460 (1988).Google Scholar
  189. 189.
    A. Junod, A. Bezinge, and J. Muller, Physica C 152, 50 (1988).Google Scholar
  190. 190.
    K. Koyama, A. Junod, T. Graf, G. Triscone, and J. Muller, Physica C 185–189, 461 (1991).Google Scholar
  191. 191.
    R.S. Liu, W.N. Wang, C.T. Chang, and P.T. Wu, Jap. J. Appl. Phys. 28, L2155 (1989).Google Scholar
  192. 192.
    R.S. Liu, W.N. Wang, P.T. Wu, and C.T. Chang, Physica C 162–164, 113 (1989).Google Scholar
  193. 193.
    R.S. Liu, R. Janes, M.J. Bennett, and P.P. Edwards, Appl. Phys. Lett. 57, 920 (1990).Google Scholar
  194. 194.
    R.S. Liu, D.N. Zheng, R. Janes, A.M. Campbell, and P.P. Edwards, Solid State Commun. 76, 1185 (1990).Google Scholar
  195. 195.
    K. Ma and A. Pierre, J. Mater. Res. 7, 1328 (1992).Google Scholar
  196. 196.
    K. Ma and A. Pierre, J. Mater. Res. 9, 286 (1994).Google Scholar
  197. 197.
    T. Nishio and Y. Fujiki, J. Mater. Sci. Lett. 12, 394 (1993).Google Scholar
  198. 198.
    P. Odier, B. Dubois, M. Gervais, and A. Douy, Mater. Res. Bull. 24, 11 (1989).Google Scholar
  199. 199.
    R. Pankajavalli, J. Janaki, O.M. Sreedharan, J.B. Gnanamoorthy, G.V.N. Rao, V. Sankarasastry, M.P. Janawadkar, Y. Hariharan, and T.S. Radhakrishnan, Physica C 156, 737 (1988).Google Scholar
  200. 200.
    S. Roy, A. Das Sharma, S.N. Roy, and H.S. Maiti, J. Mater. Res. 8, 2761 (1993).Google Scholar
  201. 201.
    F.R. Sale and Mahloojchi, Ceram. Int. 14, 229 (1988).Google Scholar
  202. 202.
    R. Sanjinés, R.K. Thampi, and J. Kiwi, J. Amer. Ceram. Soc. 71, C512 (1988).Google Scholar
  203. 203.
    I. Sargánková, M. Timko, J. Kovác, S. Mat'as, P. Diko, and M. Cerník, J. Mater. Sci. Lett. 11, 1718 (1992).Google Scholar
  204. 204.
    Y.K. Sun and W.Y. Lee, Physica C 212, 37 (1993).Google Scholar
  205. 205.
    A. Tampieri, G. Celotti, F. Ricciardiello, and G. Russo, Physica C 227, 300 (1994).Google Scholar
  206. 206.
    G. Triscone, A. Junod, and J. Muller, Physica C 162–164, 470 (1989).Google Scholar
  207. 207.
    H.K. Varma, K.P. Kumar, K.G.K. Warrier, and A.D. Damodaran, J. Mater. Sci. Lett. 8, 1313 (1989).Google Scholar
  208. 208.
    P.L. Villa, S. Zannells, V. Ottobenni, and A. Ricca, J. Less-Common Metals 150, 299 (1989).Google Scholar
  209. 209.
    Y.M. Yang, P. Out, B.R. Zhao, Y.Y. Zhao, L. Li, Q.Z. Ran, and R.Y. Jin, J. Appl. Phys. 66, 312 (1989).Google Scholar
  210. 210.
    C. Chiang, C.Y. Shei, Y.T. Huang, W.H. Lee, and P.T. Wu, Physica C 170, 383 (1990).Google Scholar
  211. 211.
    C. Chiang, C.Y. Shei, S.F. Wu, and Y.T. Huang, Appl. Phys. Lett. 58, 2435 (1991).Google Scholar
  212. 212.
    V. Slusarenko, K.R. Thampi, and J. Kiwi, J. Solid State Chem. 79, 277 (1989).Google Scholar
  213. 213.
    M. Schieber, T. Tsach, M. Maharizi, M. Levinsky, B.L. Zhou, M. Golosovshy, and D. Davidov, Cryogenics 30, 451 (1990).Google Scholar
  214. 214.
    P.C. McIntyre, M.J. Cima, and M.F. Ng, J. Appl. Phys. 68, 4183 (1990).Google Scholar
  215. 215.
    P.C. McIntyre, M.J. Cima, M.F. Ng, R.C. Chiu, and W.E. Rhine, J. Mater. Res. 5, 2771 (1990).Google Scholar
  216. 216.
    P.C. McIntyre, M.J. Cima, D.H. Liebenberg, and T.L. Francavilla, Appl. Phys. Lett. 58, 2033 (1991).Google Scholar
  217. 217.
    P.C. McIntyre, M.J. Cima, J.A. SmithJr. R.B. Hallock, M.P. Siegal, and J.M. Phillips, J. Appl. Phys. 71, 1868 (1992).Google Scholar
  218. 218.
    S. Vilminot, S. Elhadigui, A. Derory, M. Drillon, J.C. Bernier, J.P. Kappler, R. Kuentzler, and Y. Dossmann, Mater. Res. Bull. 23, 521 (1988).Google Scholar
  219. 219.
    T. Brylewski and K. Przybylski, Applied Superconductivity 1, 737 (1993).Google Scholar
  220. 220.
    J. Fransaer, J.R. Roos, L. Delaey, O.Van Der Biest, O. Arkens, and J.P. Celis, J. Appl. Phys. 65, 3277 (1989).Google Scholar
  221. 221.
    B.W. Statt, Z. Wang, M.J.G. Lee, J.V. Yakhmi, P.C.de Camargo, J.F. Major, and J.W. Rutter, Physica C 156, 251 (1988).Google Scholar
  222. 222.
    J. Fransaer, T. Eggermont, O. Arkens, O.Van Der Biest, E. Beyne, J. Roggen, W. Boon, M. Dhalle, J. Vanacken, B. Wuyts, C.Van Haesendonck, and Y. Bruynseraede, Physica C 162–164, 881 (1989).Google Scholar
  223. 223.
    T. Fujisawa, A. Takagi, T. Honjoh, K. Okuyama, S. Ohshima, K. Matsuki, and K. Muraishi, Jap. J. Appl. Phys. 8, 1358 (1989).Google Scholar
  224. 224.
    T. Fujisawa, A. Takagi, K. Okuyama, and S. Ohshima, Jap. J. Appl. Phys 8, 1358 (1989).Google Scholar
  225. 225.
    A. Gholinia and F.R. Sale, J. Thermal Analysis 40, 349 (1993).Google Scholar
  226. 226.
    A. Gholinia and F.R. Sale, J. Thermal Analysis 42, 733 (1994).Google Scholar
  227. 227.
    K. Poels, J. Kwarciak, O.Van der Biest, W. Boon, M. Dhalle, and Y. Bruynseraede, Physica C 185–189, 2413 (1991).Google Scholar
  228. 228.
    C.Y. Shieh, Y. Huang, M.K. Wu, and C.Y. Huang, Physica C 185–189, 513 (1991).Google Scholar
  229. 229.
    T. Tsuchiya, T. Okano, and T. Sei, J. Mater. Sci. 27, 3645 (1992).Google Scholar
  230. 230.
    C.J. Haung, T.Y. Tseng, T.S. Heh, F.H. Chen, W.S. Jong, Y.S. Fran, and S.M. Shiau, Solid State Commun. 72, 563 (1989).Google Scholar
  231. 231.
    R.V. Kamat, T.V. Vittal Rao, K.T. Pillai, V.N. Vaidya, and D.D. Sood, Physica C 181, 245 (1991).Google Scholar
  232. 232.
    T. Okano, T. Sei, and T. Tsuchiya, J. Mater. Sci. 27, 4085 (1992).Google Scholar
  233. 233.
    T. Sei, T. Okano, and T. Tsuchiya, J. Non Cryst. Solids 147&148, 711 (1992).Google Scholar
  234. 234.
    M. Nagano and Greenblatt, Solid State Commun. 67, 595 (1988).Google Scholar
  235. 235.
    H. Stephan, K. Gloe, U. Wiesner, and G. Krabbes, Z. anorg. allg Chem. 620, 1915 (1994).Google Scholar
  236. 236.
    D. Rambabu, Japn. J. Appl. Pjys. 29, 507 (1990).Google Scholar
  237. 237.
    T.N. Bowmer and Shokoohi, J. mater. Res. 6, 670 (1991).Google Scholar
  238. 238.
    P.Y. Chu, I. Campion, and R.C. Buchanan, J. Mater. Res. 8, 261 (1993).Google Scholar
  239. 239.
    P.Y. Chu and R.C. Buchanan, J. Mater. Res. 8, 2134 (1993).Google Scholar
  240. 240.
    M.E. Gross, M. Hong, S.H. Liou, P.K. Gallagher, and J. Kwo, Appl. Phys. Lett. 52, 160 (1988).Google Scholar
  241. 241.
    A. Gupta, R. Jagannathan, E.I. Cooper, E.A. Giess, J.I. Landman, and B.W. Hussey, Appl. Phys. Lett. 52, 2077 (1988).Google Scholar
  242. 242.
    A.H. Hamdi, J.V. Mantese, A.L. Micheli, R.C.O. Laugal, D.F. Dungan, Z.H. Zhang, and K.R. Padmanabhan, Appl. Phys. Lett. 51, 2152 (1987).Google Scholar
  243. 243.
    A.H. Hamdi, J.V. Mantese, A.L. Micheli, R.A. Waldo, Y.L. Chen, and C.A. Wong, Appl. Phys. Lett. 53, 435 (1988).Google Scholar
  244. 244.
    M. Klee, W. Brand, and J.W.C.De Vries, J. Cryst. Growth 91, 346 (1988).Google Scholar
  245. 245.
    M. Klee, G.M. Stollman, S. Stotz, and J.W.C.De Vries, Solid State Commun. 67, 613 (1988).Google Scholar
  246. 246.
    J.V. Mantese, A.B. Catalan, A.H. Hamdi, and A.L. Micheli, Appl. Phys. Lett. 52, 1741 (1988).Google Scholar
  247. 247.
    J.V. Mantese, A.B. Catalan, A.H. Hamdi, A.L. Micheli, and K. Studer-Rabeler, Appl. Phys. Lett. 53, 526 (1988).Google Scholar
  248. 248.
    J.V. Mantese, A.B. Catalan, A.M. Mance, A.H. Hamdi, A.L. Micheli, J.A. Sell, and M.S. Meyer, Appl. Phys. Lett. 53, 1335 (1988).Google Scholar
  249. 249.
    H. Shimojima, K. Tsukamoto, and C. Yamagishi, Japn. J. Appl. Phys. 28, L226 (1989).Google Scholar
  250. 250.
    D.F. Vaslow, G.H. Dieckmann, D.D. Elli, A.B. Ellis, D.S. Holmes, A. Lefkow, M. MacGregor, J.E. Nordman, M.F. Petras, and Y. Yang, Appl. Phys. Lett. 53, 324 (1988).Google Scholar
  251. 251.
    A. Bourdillon, and N.X. Tan Bourdillon in High Temperature Superconductors; Processing and Science, Ch. V (Academic Press, Inc., San Diego, 1994), p. 145.Google Scholar
  252. 252.
    A. Bailey, G.J. Russell, and K.N.R. Taylor in Studies of High Temperature Superconductors, Volume 9, edited by A. Narlikar (Nova Science Publishers, New York, 1992), p. 145.Google Scholar
  253. 253.
    L.Q. Feng, K. Mori, Y. Ishikawa, K. Kamigaki, and K. Rokudo, Physica C 185–189, 491 (1991).Google Scholar
  254. 254.
    R.J. Cava, J.J. Krajewski, W.F. PeckJr., B. Battlog, L.W. RuppJr., R.M. Fleming, A.C.W. James, and P. Marsh, Nature (London) 338, 328 (1989).Google Scholar
  255. 255.
    J. Karpinski, E. Kaldis, E. Jilek, S. Rusiecki, and B. Bucher, Nature (London) 336, 660 (1988).Google Scholar
  256. 256.
    D.E. Morris, J.H. Nickel, J.Y.T. Wei, N.G. Asmar, J.S. Scott, U.M. Scheven, C.T. Hultgren, A.G. Markelz, J.E. Post, P.J. Heaney, D.R. Veblen, and R.M. Hazen, Phys. Rev. B39, 7347 (1989).Google Scholar
  257. 257.
    W. König, and G. Gritzner, Physica C 202, 37 (1992).Google Scholar
  258. 258.
    M. Kakihana, M. Käll, L. Börjesson, H. Mazaki, H. Yasuoka, P. Berastegui, S. Eriksson, and L-G. Johansson, Physica C 173, 377 (1991).Google Scholar
  259. 259.
    H. Tamura, H. Mineta, M. Tatsumi, J. Tanishita and S. Yamamoto, Chem. Lett. 1147 (1994).Google Scholar
  260. 260.
    G.V.R. Rao, D.S.S. Narayana, U.V. Varadaraju, G.V.N. Rao and S. Venkadesan, J. Alloys & Compounds 217, 200 (1995).Google Scholar
  261. 261.
    G.V.R. Rao, D.S.S. Narayana, U.V. Varadaraju, and S. Venkadesan, Mater. Chem. Phys. (1995), in press.Google Scholar
  262. 262.
    J. McHale, G.H. Myer, and R.E. Salomon, J. Mater. Res. 10, 1 (1995).Google Scholar
  263. 263.
    B.I. Lee, T.J. Doi, and T. Yuasa, Physica C 226, 377 (1994).Google Scholar
  264. 264.
    T. Monde and S. Sakka, Proc. MRS. International Meeting on Advance Materials (1988), p. 233.Google Scholar
  265. 265.
    D.J. Anderton and F.R. Sale, Powder Metall. 22, 14 (1979).Google Scholar
  266. 266.
    M.S.G. Baythoun and F.R. Sale, J. Mater. Sci. 17, 2757 (1982).Google Scholar
  267. 267.
    P. Sujatha Devi and M. Subba Rao, Thermochim. Acta 153, 181 (1989).Google Scholar
  268. 268.
    P. Sujatha Devi, and M. J. Subba Rao, Solid State Chem. 98, 237 (1992).Google Scholar
  269. 269.
    C. Marcilly, P. Courty, and B. Delmon, J. Amer. Ceram. Soc. 53, 56 (1970).Google Scholar
  270. 270.
    P. Courty, H. Ajot, C. Marcilly, and B. Delmon, Powder Technol. 7, 21 (1973).Google Scholar
  271. 271.
    M. Kato, T. Miyajima, A. Sakuma, T. Noji, Y. Koike, A. Fujiwara, and Y. Saito, Physica C 244, 263 (1995).Google Scholar
  272. 272.
    K.N. Pearce, Aust. J. Chem. 33, 1511 (1980).Google Scholar
  273. 273.
    P. Karen and A. Kjekshus, J. Am. Ceram. Soc. 77, 547 (1994).Google Scholar
  274. 274.
    D. Rambabu, Japan. J. Appl. Phys. 29, 507 (1990).Google Scholar
  275. 275.
    J.J. Kingsley and K.C. Patil, Mater. Lett. 6, 427 (1988).Google Scholar
  276. 276.
    R. Gopalan, Y.S.N. Murthy, T. Rajeshekharan, S. Ravi, and V. Seshubai, Mater. Lett. 8, 441 (1989).Google Scholar
  277. 277.
    I.A. Chick, L.R. Pedarson, G.D. Maupin, J.L. Bates, L.E. Thomas, and G.J. Exarhos, Mater. Lett. 10, 6 (1990).Google Scholar
  278. 278.
    L.R. Pederson, G.D. Maupin, W.J. Weber, D.J. McReady, and R.W. Stephens, Mater. Lett. 10, 437 (1991).Google Scholar
  279. 279.
    P. Ravindranathan and K.C. Patil, J. Mater. Sci. Lett. 5, 221 (1986).Google Scholar
  280. 280.
    P. Ravindranathan, G.V. Mahesh, and K.C. Patil, J. Solid State Chem. 66, 20 (1987).Google Scholar
  281. 281.
    R.A. Day and A.L. Underwood in Quantitative Analysis, (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A. 1967).Google Scholar
  282. 282.
    Y-M. Chiang, S.L. Furcone, J.A.S. Ikeda, and D.A. Rudman, Mat. Res. Soc. Symp. Proc. 99, 307 (1988).Google Scholar
  283. 283.
    J. McKitrrick and R. Contreras, Thin Solid Films 206, 146 (1991).Google Scholar
  284. 284.
    H. Mazaki, H. Yasuoka, M. Kakihana, H. Fujimori, M. Yashima, and M. Yoshimura, Physica C 246, 37 (1995).Google Scholar
  285. 285.
    L.M. Falter, D.A. Payne, T.A. Friedmann, W.H. Wright, and D.M. Ginsberg in Electro-ceramics, edited by A.J. Moulson, J. Binner, and R. Morrell, British Ceramic Proceedings 41, 261 (1989).Google Scholar
  286. 286.
    H.H. Wang, K.D. Carllson, U. Geiser, R.J. Thorn, H-C. Kao, M.A. Beno, M.R. Monaghan, T.J. Allen, R.B. Proksch, D.L. Stupka, J.M. Williams, B.K. Flandermeyer, and R.B. Poeppel, Inorg. Chem. 26, 1476 (1987).Google Scholar
  287. 287.
    M.K. Agarwala, D.L. Bourell, and C. Persad, J. Amer. Ceram. Soc. 75, 1975 (1992).Google Scholar
  288. 288.
    A. Aoki, S. Ohno, and Y. Muramatsu, J. Non Cryst. Solids 147&148, 720 (1992).Google Scholar
  289. 289.
    M. Kakihana, L. Börjesson, S. Eriksson, P. Svedlindh, and P. Norling, Physica C 162–164, 931 (1989).Google Scholar
  290. 290.
    M. Kakihana, L. Börjesson, S. Eriksson, and P. Svedlindh, J. Appl. Phys. 69, 867 (1991).Google Scholar
  291. 291.
    M. Kakihana, M. Arima, M. Yashima, M. Yoshimura, H. Mazaki, and H. Yasuoka, Advanced Materials 93, I/A: Ceramics, Powders, Corrosoin and Advanced Processing, edited by N. Mizutani, et al. Trans. Mater. Res. Soc. Jpn. 14A, 801 (1994).Google Scholar
  292. 292.
    H.K. Lee, D. Kim, and S.I. Suck, J. Appl. Phys. 65, 2563 (1989).Google Scholar
  293. 293.
    S.H. Shieh and W.J. Thomson, Physica C 204, 135 (1992).Google Scholar
  294. 294.
    W.J. Thomson, H. Wang, D.V. Parkman, D.X. Li, M. Strasik, T.S. Luhman, C. Han, and I.A. Aksay, J. Amer. Ceram. Soc. 72, 1977 (1989).Google Scholar
  295. 295.
    S.E. Trolier, S.D. Atkinson, P.A. Fuierer, J.H. Adair, and R.E. Newnham, Amer. Ceram. Soc. Bull. 67, 759 (1988).Google Scholar
  296. 296.
    P. Berastegui, M. Kakihana, M. Yoshimura, H. Mazaki, H. Yasuoka, L-G. Johansson, S. Eriksson, L. Börjesson, and M. Käll, J. Appl. Phys. 73, 2424 (1993).Google Scholar
  297. 297.
    T-M. Chen and Y.H. Hu, Physica C 190, 124 (1991).Google Scholar
  298. 298.
    H. Mazaki, M. Kakihana, and H. Yasuoka, Japan. J. Appl. Phys. 30, 38 (1991).Google Scholar
  299. 299.
    M. Nagai, K. Yamashita, T. Nishio, T. Hattori, M. Matsuda, and M. Takata, Mol. Cryst. Liq. Cryst. 184, 87 (1990).Google Scholar
  300. 300.
    G. Paz-Pujalt, Physica C 166, 177 (1990).Google Scholar
  301. 301.
    N.H. Wang, C.M. Wang, H-C.I. Kao, D.C. Ling, H.C. Ku, and K.H. Lii, Japan. J. Appl. Phys. 28, L1505 (1989).Google Scholar
  302. 302.
    A. Aoki, Japan. J. Appl. Phys. 29, L270 (1990).Google Scholar
  303. 303.
    T. Asaka, Y. Okazawa, T. Hirayama, and K. Tachikawa, Japan. J. Appl. Phys. 29, L280 (1990).Google Scholar
  304. 304.
    L. Ben-Dor, H. Diab, and I. Felner, J. Solid State Chem. 88, 183 (1990).Google Scholar
  305. 305.
    T-M. Chen and Y.H. Hu, J. Solid State Chem. 97, 124 (1992).Google Scholar
  306. 306.
    T-S. Heh, J-R. Chen, and T-Y. Tseng. Japan. J. Appl. Phys. 29, 652 (1990).Google Scholar
  307. 307.
    M. Kakihana, M. Yoshimura, H. Mazaki, H. Yasuoka, and L. Börjesson, J. Appl. Phys. 71, 3904 (1992).Google Scholar
  308. 308.
    H.K. Lee, K.W. Lee, K. Park, N.M. Huang, O.K. Oh, J.S. Kim, K.H. Yoo, Y.B. Kim, C.S. Kim, Y.K. Cho, J.C. Park, and S.I. Suck, J. Appl. Phys. 66, 1881 (1989).Google Scholar
  309. 309.
    H.K. Lee, K.W. Lee, D.H. Ha, K. Park, and J.C. Park, Appl. Phys. Lett. 55, 1249 (1989).Google Scholar
  310. 310.
    M. Kakihana, M. Yoshimura, H. Mazaki, H. Yasuoka, and L. Börjesson in Better Ceramics Through Chemistry V, edited by J. Hampden-Smith, W.G. Klemperer, and C.J. Brinker (Materials Research Society, Pittsburgh, PA, 1992), Spring Proceedings 271, p. 395.Google Scholar
  311. 311.
    R. Mahesh, R. Nagarajan, and C.N.R. Rao, J. Solid State Chem. 96, 2 (1992).Google Scholar
  312. 312.
    H. Mazaki, M. Takano, R. Kanno, and Y. Takeda, Jpn. J. Appl. Phys. 26, L780 (1987).Google Scholar
  313. 313.
    E.H. Chen, H.S. Koo, T.Y. Tseng, R.S. Liu, and P.T. Wu, Mater. Lett. 8, 228 (1989).Google Scholar
  314. 314.
    F.H. Chen, H.S. Koo, and T.Y. Tseng, J. Mater. Sci. 25, 3338 (1990).Google Scholar
  315. 315.
    F. Chen and T. Tseng, J. Am. Ceram. Soc. 73, 889 (1990).Google Scholar
  316. 316.
    H.S. Koo, P.T. Wu, F.H. Chen, and T.Y. Tseng, J. Mater. Sci. Lett. 9, 807 (1990).Google Scholar
  317. 317.
    F.H. Chen, H.S. Kao, and T.Y. Tseng, J. Amer. Ceram. Soc. 75, 96 (1992).Google Scholar
  318. 318.
    A.A. Hussain and M. Sayer, J. Appl. Phys. 70, 1580 (1991).Google Scholar
  319. 319.
    A. Douy and P. Odier, Mater. Res. Bull. 24, 1119 (1989).Google Scholar
  320. 320.
    M. Gervais, P. Odier, and J.P. Coutures, Mater. Sci. Eng. B8, 287 (1991).Google Scholar
  321. 321.
    F.J. Gotor, P. Odier, M. Gervais, J. Choisnet, and P. Monod, Physica C 218, 429 (1993).Google Scholar
  322. 322.
    F.J. Gotor, P. Odier, M. Gervais, and J. Choisnet, J. Sol-Gel Sci. & Technol. 2, 427 (1994).Google Scholar
  323. 323.
    T.V. Mani, H.K. Varma, K.G.K. Warrier, and A.D. Damodaran, Br. Ceram. Trans. J. 91, 120 (1992).Google Scholar
  324. 324.
    E.J.A. Pope and J.D. Mackenzie, Proceedings of the 38th Electronics Components Conference (IEEE, Los Angeles, 1988), p. 176.Google Scholar
  325. 325.
    E.J.A. Pope and J.D. Mackenzie in High-Temperature Superconductors II, edited by D.W. Capone, W.H. Butler. B. Batlogg, and C.W. Chu (Materials Research Society, 1988), p. 97.Google Scholar
  326. 326.
    E.J.A. Pope and J.D. Mackenzie, Proceedings of the 1989 International Superconductor Applications Convention, (1989).Google Scholar
  327. 327.
    P. Catania, N. Hovnanian, and L. Cot, Mater. Res. Bull. 25, 1477 (1990).Google Scholar
  328. 328.
    J.G. Fagan and V.R.W. Amarakoon, J. Mater. Res. 8, 1501 (1993).Google Scholar
  329. 329.
    J.D. Tweed, J.C. McDowell, and N.M.D. Brown, J. Mater. Sci. Lett. 12, 461 (1993).Google Scholar
  330. 330.
    J.C.W. Chien, B.M. Gong, J.M. Madsen, and R.B. Hallock, Bull. Am. Phys. Soc. 33, 447, 515 (1988).Google Scholar
  331. 331.
    J.C.W. Chien, B.M. Gong, Y.S. Yang, J.M. Madsen, W.M. Tiernan, and R.B. Hallock, Phys. Rev. B 38, 11853 (1988).Google Scholar
  332. 332.
    J.C.W. Chien, Polymer Bulletin 21, 1 (1989).Google Scholar
  333. 333.
    J.C.W. Chien, B.M. Gong, X. Mu, and Y.S. Yang, J. Polymer Science: Part A: Polymer Chemistry 28, 1999 (1990).Google Scholar
  334. 334.
    J.C.W. Chien, B.M. Gong, Y.S. Yang, J.M. Madsen, W.M. Tiernan, and R.B. Hallock, Physica C 165, 279 (1990).Google Scholar
  335. 335.
    T. Goto and M. Kada, Japan. J. Appl. Phys. Part 2, 26, L1527 (1987).Google Scholar
  336. 336.
    T. Goto, I. HOriba, M. Kada, and M. Tsujihara, Japan. J. Appl. Phys. 26, Supplement 26–3, 1211 (1987).Google Scholar
  337. 337.
    T. Goto and M. Kada, J. Mater. Res. 3, 1292 (1988).Google Scholar
  338. 338.
    T. Goto and T. Sugishita, J. Mater. Res. 7, 11 (1992).Google Scholar
  339. 339.
    G.F.De la Fuente, A. Sotelo, Y. Huang, M.T. Ruiz, A. Badía, L.A. Angurel, F. Lera, R. Navarro, C. Rillo, R. Ibañez, D. Beltran, F. Sapiña, and A. Beltran, Physica C 185–189, 509 (1991).Google Scholar
  340. 340.
    M.T. Ruiz, G.F.de la Fuente, A. Badía, J. Blasco, M. Castro, A. Sotelo, A. Larrea, F. Lera, C. Rillo, and R. Navarro, J. Mater. Res. 8, 1268 (1993).Google Scholar
  341. 341.
    A. Sotelo, G.F.de la Fuente, F. Lera, D. Beltrán, F. Sapiña, R. Ibáñez, A. Beltrán, and M.R. Bermejo, Chem. Mater. 5, 851 (1993).Google Scholar
  342. 342.
    S. Maeda, Y. Tsurusaki, Y. Tachiyama, K. Naka, A. Ohki, T. Ohgushi, and T. Takeshita, J. Polymer Science: Part A: Polymer Chemistry 32, 1729 (1994).Google Scholar
  343. 343.
    M.J. Cima and W.E. Rhine, Adv. Ceram. Mater. 2, 329 (1987).Google Scholar
  344. 344.
    M.J. Cima, R. Chiu, and W.E. Rhine, Mater. Res. Soc. Symp. Proc. 99, 241 (1988).Google Scholar
  345. 345.
    J. Macho, R.W. Schaeffer, G.H. Myer, R.E. Salomon, and J.E. Crow, J. Mater. Res. 7, 1046 (1992).Google Scholar
  346. 346.
    F. Chaput and J.P. Boilot, Silicates Industriels 11–12, 317 (1990).Google Scholar
  347. 347.
    M. Rajendran and M. Subba Rao, J. Solid State Chem. 113, 239 (1994).Google Scholar
  348. 348.
    M. Kakihana, M. Arima, M. Yashima, M. Yoshimura, Y. Nakamura, H. Mazaki, and H. Yasuoka, in Sol-Gel Science and Technology, Ceramic Transactions 55, 65, The Am. Ceram. Soc. Westerville, Ohio (1995), in press.Google Scholar
  349. 349.
    T.W. Gilbert, L. Newman, and L. Klotz, Anal. Chem. 40, 2133 (1968).Google Scholar
  350. 350.
    D. Beltrán-Porter, E. Martínez-Tamayo, R. Ibáñez, A. Beltrán-Porter, J.V. Folgado, E. Escrivá, V. Muñoz, A. Segura, and Cantarero, A. Mater. Res. Bull. 23, 987 (1988).Google Scholar
  351. 351.
    C.P. Love, C.C. Torardi, and C.J. Page, Inorg. Chem. 31, 1784 (1992).Google Scholar
  352. 352.
    M. Kakihana, M. Osada, M. Yashima, and M. Yoshimura, unpublished work.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Masato Kakihana
    • 1
  1. 1.Research Laboratory of Engineering MaterialsTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations