Advertisement

Letters in Mathematical Physics

, Volume 17, Issue 2, pp 117–127 | Cite as

Analytic vectors, anomalies and star representations

  • Carlos Alcalde
  • Daniel Sternheimer
Article

Abstract

It is hinted that anomalies are not really anomalous since (at least in characteristic examples) they can be related to a lack of common analytic vectors for the Hamiltonian and the observables. We reanalyze the notions of analytic vectors and of local representations of Lie algebras in this light, and show how the notion of preferred observables introduced in the deformation (star product) approach to quantization may help give an anomaly-free formulation to physical problems. Finally, some remarks are made concerning the applicability of these considerations to field theory, especially in two dimensions.

AMS subject classifications (1985)

81D07 22E70 81E40 81C25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nelson, E., Ann. Math. 81, 547 (1959).Google Scholar
  2. 2.
    Gårding, L., Bull. Soc. Math. France 88, 73 (1960).Google Scholar
  3. 3.
    Flato, M. and Sternheimer, D., Commun. Math. Phys. 12, 296 (1969); 14, 5 (1969); Phys. Rev. Lett. 16, 1185 (1966).Google Scholar
  4. 4.
    Flato, M., Simon, J., Snellman, H., and Sternheimer, D., Ann. Sci. École Norm. Sup. (4) 5, 423 (1972); Simon, J., Commun. Math. Phys. 28, 39 (1972); Flato, M. and Simon, J., J. Funct. Anal. 13, 268 (1973).Google Scholar
  5. 5.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., Ann. Phys. 111, 61; 111 (1978); Fronsdal, C., Rep.Math. Phys. 15, 111 (1978); J. Math. Phys. 20, 2226 (1979); Arnal, D., Cortet, J. C., Flato, M., and Sternheimer, D., in E. Tirapegui (ed.), Field Theory, Quantization and Statistical Physics, D. Reidel, Dordrecht, 1981, p. 85.CrossRefGoogle Scholar
  6. 6.
    Sternheimer, D., AMS Lectures in Applied Math 21, 255 (1985); Sém. Math. Sup. Montréal 102, 260 (1986); Arnal, D. and Cortet, J. C., J. Geom. Phys. 2, 83 (1985); Cahen, M. and Gutt, S., Lecture at the Athens (GA) meeting, July 1988; Cahen, M., in D. Bernard and Y. Choquet-Bruhat (eds.), Physique quantique et géométrie, Hermann, Paris, 1988, p. 43.Google Scholar
  7. 7.
    Esteve, J. G., Phys. Rev. D34, 674 (1986); Manton, N. S. ITP Santa Barbara Preprint NSF-ITP 83-164 (1983); Ann. Phys. 159, 220 (1985).CrossRefGoogle Scholar
  8. 8.
    Gårding, L., Proc. Nat. Acad. Sci. USA 33, 331 (1947); Dixmier, J. and Malliavin, P., Bull. Sci. Math. (2) 102, 307 (1978).Google Scholar
  9. 9.
    Coleman, S. and Mandula, J., Phys. Rev. 159, 1251 (1967); Haag, R., Lopuszanski, J., and Sohnius, M., Nucl. Phys. B88, 257 (1975).CrossRefGoogle Scholar
  10. 10.
    Reeh, H., J. Math. Phys. 29, 1535 (1988); Sekine, K., Proc. 2nd Int. Symp. Foundations of Quantum Mechanics, Tokyo, 1986, p. 127.Google Scholar
  11. 11.
    Craige, N. S., Nahm, W., and Naraim, S., Ann. Phys. 174, 78 (1987).CrossRefGoogle Scholar
  12. 12.
    Martin, C., Lett. Math. Phys. 1 155 (1976).Google Scholar
  13. 13.
    Kogut, J. and Susskind, L., Phys. Rev. D11, 3594 (1975).CrossRefGoogle Scholar
  14. 14.
    Isler, K., Schmid, C., and Trugenberger, C. A., Preprint ETH-PT/87-1, Zurich.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Carlos Alcalde
    • 1
  • Daniel Sternheimer
    • 1
  1. 1.Physique-MathématiqueUniversité de BourgogneDijon CedexFrance

Personalised recommendations