Analytic vectors, anomalies and star representations
Article
- 42 Downloads
- 5 Citations
Abstract
It is hinted that anomalies are not really anomalous since (at least in characteristic examples) they can be related to a lack of common analytic vectors for the Hamiltonian and the observables. We reanalyze the notions of analytic vectors and of local representations of Lie algebras in this light, and show how the notion of preferred observables introduced in the deformation (star product) approach to quantization may help give an anomaly-free formulation to physical problems. Finally, some remarks are made concerning the applicability of these considerations to field theory, especially in two dimensions.
AMS subject classifications (1985)
81D07 22E70 81E40 81C25Preview
Unable to display preview. Download preview PDF.
References
- 1.Nelson, E., Ann. Math. 81, 547 (1959).Google Scholar
- 2.Gårding, L., Bull. Soc. Math. France 88, 73 (1960).Google Scholar
- 3.Flato, M. and Sternheimer, D., Commun. Math. Phys. 12, 296 (1969); 14, 5 (1969); Phys. Rev. Lett. 16, 1185 (1966).Google Scholar
- 4.Flato, M., Simon, J., Snellman, H., and Sternheimer, D., Ann. Sci. École Norm. Sup. (4) 5, 423 (1972); Simon, J., Commun. Math. Phys. 28, 39 (1972); Flato, M. and Simon, J., J. Funct. Anal. 13, 268 (1973).Google Scholar
- 5.Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., Ann. Phys. 111, 61; 111 (1978); Fronsdal, C., Rep.Math. Phys. 15, 111 (1978); J. Math. Phys. 20, 2226 (1979); Arnal, D., Cortet, J. C., Flato, M., and Sternheimer, D., in E. Tirapegui (ed.), Field Theory, Quantization and Statistical Physics, D. Reidel, Dordrecht, 1981, p. 85.CrossRefGoogle Scholar
- 6.Sternheimer, D., AMS Lectures in Applied Math 21, 255 (1985); Sém. Math. Sup. Montréal 102, 260 (1986); Arnal, D. and Cortet, J. C., J. Geom. Phys. 2, 83 (1985); Cahen, M. and Gutt, S., Lecture at the Athens (GA) meeting, July 1988; Cahen, M., in D. Bernard and Y. Choquet-Bruhat (eds.), Physique quantique et géométrie, Hermann, Paris, 1988, p. 43.Google Scholar
- 7.Esteve, J. G., Phys. Rev. D34, 674 (1986); Manton, N. S. ITP Santa Barbara Preprint NSF-ITP 83-164 (1983); Ann. Phys. 159, 220 (1985).CrossRefGoogle Scholar
- 8.Gårding, L., Proc. Nat. Acad. Sci. USA 33, 331 (1947); Dixmier, J. and Malliavin, P., Bull. Sci. Math. (2) 102, 307 (1978).Google Scholar
- 9.Coleman, S. and Mandula, J., Phys. Rev. 159, 1251 (1967); Haag, R., Lopuszanski, J., and Sohnius, M., Nucl. Phys. B88, 257 (1975).CrossRefGoogle Scholar
- 10.Reeh, H., J. Math. Phys. 29, 1535 (1988); Sekine, K., Proc. 2nd Int. Symp. Foundations of Quantum Mechanics, Tokyo, 1986, p. 127.Google Scholar
- 11.Craige, N. S., Nahm, W., and Naraim, S., Ann. Phys. 174, 78 (1987).CrossRefGoogle Scholar
- 12.Martin, C., Lett. Math. Phys. 1 155 (1976).Google Scholar
- 13.Kogut, J. and Susskind, L., Phys. Rev. D11, 3594 (1975).CrossRefGoogle Scholar
- 14.Isler, K., Schmid, C., and Trugenberger, C. A., Preprint ETH-PT/87-1, Zurich.Google Scholar
Copyright information
© Kluwer Academic Publishers 1989