Archives of Microbiology

, Volume 117, Issue 2, pp 209–214 | Cite as

Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources

  • Werner Badziong
  • Rudolf K. Thauer
Article

Abstract

Desulfovibrio vulgaris (Marburg) was grown on H2 plus sulfate and H2 plus thiosulfate as the sole energy sources and acetate plus CO2 as the sole carbon sources. Conditions are described under which the bacteria grew exponentially. Specific growth rates (μ) and molar growth yields (Y) at different pH were determined.

μ and Y were found to be strongly dependent on the pH. Highest growth rates and molar growth yields were observed for growth on H2 plus sulfate at pH 6.5 (μ=0.15h-1; YSO42-=8.3g·mol-1) and for growth on H2 plus thiosulfate at pH 6.8 (μ=0.21h-1; YS2O32=16.9g·mol-1).

The growth yields were found to increase with increasing growth rates: plots of 1/Y versus 1/μ were linear. Via extrapolation to infinite growth rates a YSO42-/max of 12.2g·mol-1 and a YS2O32-/max of 33.5g·mol-1 was obtained.

The growth yield data are interpred to indicate that dissimilatory sulfate reduction to sulfide is associated with a net synthesis of 1 mol of ATP and that near to 3 mol of ATP are formed during dissimilatory sulfite reduction to sulfide.

Key words

Desulfovibrio Chemolithothrophic growth H2 oxidation Sulfate reduction Thiosulfate reduction Growth rates Growth yields Maintenance coefficients YATPmax 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrew, I. G., Morris, J. G.: The biosynthesis of alanin by Clostridium kluyveri. Biochim. Biophys. Acta 97, 176–179 (1965)PubMedGoogle Scholar
  2. Badziong, W., Thauer, R. K., Zeikus J. G.: Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch. Micribiol. 116 41–49 (1978)Google Scholar
  3. Barton, L. L., LeGall, J., Peck. H. D., Jr.: Oxidative phosphorylation in the obligate anaerobe, Desulfovibrio gigas. In: Horizons of bioenergetics (A. San Pietro, H. Gest, eds.), pp. 33–51, New York: Academic Press 1972Google Scholar
  4. Bray, G. A.: A simple efficient liquid scintillator for counting equeous solutions in a liquid scintillation counter. Analyt. Biochem. 1, 279–285 (1960)Google Scholar
  5. Brenchley, J. E., Prival, M., Magasanik, B.: Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J. Biol. Chem. 248, 6122–6128 (1973)PubMedGoogle Scholar
  6. Decker, K., Jungermann, K., Thauer, R. K.: Energy production in anaerobic organisms. Agew. Chem. Int. Ed. Engl. 9, 138–158 (1970)CrossRefGoogle Scholar
  7. Gunsalus, I. C., Shuster, C. W.: Energy-yielding metabolism in bacteria. In: The bacteria (I. C. Gunsalus, R. Y. Stanier, eds.) pp. 1–58. New York: Academic Press 1961Google Scholar
  8. Haschke, R. H., Campbell, L. L.: Thiosulfate reductase of Desulfovibrio vulgaris. J. Bacteriol. 106, 603–607 (1971)PubMedGoogle Scholar
  9. Haschikian, E. C.: Purification and properties of thiosulfate reductase from Desulfovibrio gigas. Arch. Microbiol. 105, 249–256 (1975)PubMedGoogle Scholar
  10. Hatchikian, E. C., Chaigneau, M., LeGall, J.: Analysis of gas production by growing cultures of three species of sulfatereducing bacteria. In: Proc. Symp. Microbial Production and Utilization of Gases (H2, CH4, CO) H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 109–118. Göttingen: Goltze 1976Google Scholar
  11. Hungate, R. E.: A roll tube method for cultivation of strict anaerobes. In: Methods in microbiology, Vol. 3 B (J. R. Norris, D. W. Ribbons, eds.), pp. 117–132: London-New York: Academic Press 1969Google Scholar
  12. Ishimoto, M., Fujimoto, D.: Adenosine-5′ phosphosulfonate as an intermediate in the reduction of sulfate by a sulfate-reducing bacterium. Proc. Jpn. Acad. Sci. 35, 243–245 (1959)Google Scholar
  13. Khosrovi, B., Mac Pherson, R., Miller, J. D. A.: Some observations on growth and hydrogen uptake by Desulfovibrio vulgaris. Arch. Microbiol. 80, 324–337 (1974)Google Scholar
  14. King, T. E., Morris, R. O.: Determination of acid-labile sulfide and sulfhydryl groups. In: Methods in enzymology, Vol. 10 (S. P. Colowik, N. O. Kaplan eds.) pp. 634–641. New York: Academic Press 1967Google Scholar
  15. Le Gall, J., Postgate, J. R.: The physiology of sulfate-reducing bacteria. Adv. Microbiol. Physiol. 10, 81–133 (1973)Google Scholar
  16. Luria, S. E.: The bacterial protoplasm: composition and organization. In: The bacteria, Vol. 1 (I. C. Gunsalus, R. Y. Stanier, eds.), pp. 1–34. New York: Academic Press 1960Google Scholar
  17. Nakatsukasa, W., Akagi, J. M.: Thiosulfate reductase isolated from Desulfotomaculum nigrificans. J. Bacteriol. 98, 429–433 (1969)PubMedGoogle Scholar
  18. Pankhurst, E. S.: The isolation and enumeration of sulphatereducing bacteria. In: Isolation of anaerobes (D. A. Shapton, R. G. Board. eds.), pp. 223–240. New York: Academic Press 1971Google Scholar
  19. Peck, H. D.: The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc. Natl. Acad. Sci. U.S.A. 45, 701–708 (1959)Google Scholar
  20. Peck, H. D., Jr.: The role of adenosine-5′-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans. J. Biol. Chem. 237, 198–203 (1962)PubMedGoogle Scholar
  21. Pirt, S. J.: The maintenance energy of bacteria in growing cultures. Proc. Roy. Soc. London 163B, 224–231 (1965)Google Scholar
  22. Postgate, J. R.: Media for sulfur bacteria. Lab. Practice 15, 1239–1244 (1966)Google Scholar
  23. Postgate, J. R.: Media for sulfur bacteria: Some amendments. Lab. Practice. 18, 286 (1969)Google Scholar
  24. Reeves, R. E.: How useful is the energy in inorganic pyrophosphate? TIBS 1, 53–55 (1976)Google Scholar
  25. Senez, J. C.: Some considerations on the energetics of bacterial growth. Bacteriol. Rev. 26, 95–107 (1962)PubMedGoogle Scholar
  26. Siegel, L. M.: Biochemistry of the sulfur cycle. In: Metabolic pathways, Vol. 7 (D. M. Greenberg, ed.), pp. 217–286. New York: Academic Press 1975Google Scholar
  27. Sorokin, Yu. I.: Sources of energy and carbon for biosynthesis in sulfate-reducing bacteria [Engl. Transl.]. Microbiology (USSR) 35, 643–647 (1966a)Google Scholar
  28. Sorokin, Yu. I.: Investigations of the structural metabolism of sulfate-reducing bacteria with 14C [Engl. Transl.]. Microbiogy (USSR) 35, 806–814 (1966b)Google Scholar
  29. Sorokin, Yu. I.: Role of carbon dioxide and acetate in the biosynthesis by sulphate-reducing bacteria. Nature 210, 551–552 (1966c)PubMedGoogle Scholar
  30. Stouthamer, A. H.: A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek. J. Microbiol. Serol. 39, 545–565 (1973)Google Scholar
  31. Stouthamer, A. H.: Yield studies in microorganisms. Durham, England: Meadowfield Press 1976Google Scholar
  32. Stouthamer, A. H., Bettenhaussen, C.: Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochim. Biophys. Acta 301, 53–70 (1973)PubMedGoogle Scholar
  33. Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemothrophic anaerobic bacteria. Bacteriol Rev. 41, 100–180 (1977)PubMedGoogle Scholar
  34. Tomlinson, N.: Carbon dioxide and acetate utilization by Clostridium kluyveri. II. Synthesis of amino acids. J. Biol. Chem. 209, 597–603 (1954)PubMedGoogle Scholar
  35. Tomlinson, N., Barker, H. A.: Carbon dioxide and acetate utilisation by Clostridium kluyveri. I. Influence of nutritional conditions on utilisation patterns. J. Biol. Chem. 209, 585–595 (1954)PubMedGoogle Scholar
  36. van Uden, N.: Kinetics of nutrient-limited growth. Annu. Rev. Microbiol. 23, 473–486 (1969)CrossRefPubMedGoogle Scholar
  37. Vosjan, J. H.: ATP generation by electron transport in Desulfovibrio desulfuricans. Antonie van Leeuwenhoek J. Microbiol. Serol. 36, 584–586 (1970)Google Scholar
  38. Vosjan, J. H.: Respiration and fermentation of the sulphate-reducing bacterium Desulfovibrio desulfuricans in a continuous culture. Plant and Soil 43, 141–152 (1975)Google Scholar
  39. Ware, D. A., Postgate, J. R.: Physiological and chemical properties of a reductant-activated inorganic pyrophosphatase from Desulfovibrio desulfuricans. J. Gen. Microbiol. 67, 145–160 (1971)PubMedGoogle Scholar
  40. Widdel, F., Pfennig, N.: A new anaerobic, sporing, acetate-oxidizing sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch. Microbiol. 112, 119–122 (1977)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Werner Badziong
    • 1
  • Rudolf K. Thauer
    • 1
  1. 1.Fachbereich Biologie-MikrobiologiePhilipps-Universität, LahnbergeMarburgGermany

Personalised recommendations