Letters in Mathematical Physics

, Volume 7, Issue 6, pp 517–521 | Cite as

Supersymmetric Yang-Mills equations as an inverse scattering problem

  • I. V. Volovich


The equations of motion (for N=3, 4) and the constraint equations (N=1, 2) for supersymmetric Yang-Mills theories are shown to be the compatibility conditions of some system of linear equations with a parameter.


Statistical Physic Linear Equation Group Theory Constraint Equation Compatibility Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BrinkL., SchwarzJ., and ScherkJ., Nucl. Phys. B121, 77 (1977); Gliozzi, F., Scherk, J., and Olive, D., Nucl. Phys. B122, 253 (1977).CrossRefGoogle Scholar
  2. 2.
    Howe, P.S., Stelle, K.S., and Townsend, P.K., CERN preprint TH 3271 (1982); Stelle, K.S., Talk at the Seminar ‘Group Theory Methods in Physics’, Zvenigorod, U.S.S.R. (1982).Google Scholar
  3. 3.
    TarasovO.V., and VladimirovA.A., Phys. Lett. 96B, 94 (1980). Grisaru, M.T., Rocek, M., and Siegel, W., Phys. Rev. Lett. 45, 1063 (1980).Google Scholar
  4. 4.
    Mandelstam, S., Berkeley preprint UCB-PTH-82/10 (1982).Google Scholar
  5. 5.
    S.P.Novikov (ed.), Theory of Solitons, Nauka, Moscow, 1982.Google Scholar
  6. 6.
    FerraraS. and ZumenoB., Nucl. Phys. B79, 413 (1974); Salam, A. and Strathdee, J., Phys. Lett. 51B, 353 (1974); Grimm, R., Sohnius, M., and Wess, J., Nucl. Phys. B133, 275 (1978).CrossRefGoogle Scholar
  7. 7.
    SohniusM., Nucl. Phys. B136, 461 (1978).CrossRefGoogle Scholar
  8. 8.
    GatesS.J., StelleK., and WestP., Nucl. Phys. B169, 347 (1980); Sohnius, M., Stelle, K., and West, P., in S. Ferrara, J. Ellis and P. van Nieuwenhuizen (eds.), Proc. Erice Workshop on Unification of Fundamental Particle Interactions Plenum, New York, 1980.CrossRefGoogle Scholar
  9. 9.
    Wess, J., Supersymmetry and Supergravity, Princeton University Press, 1982.Google Scholar
  10. 10.
    Volovich, I.V., Dokl. Acad. Nauk. U.S.S.R. 269, No. 3 (1983).Google Scholar
  11. 11.
    WittenE., Phys. Lett. 77B, 394 (1978).CrossRefGoogle Scholar
  12. 12.
    BelavinA.A. and ZakharovV.E., Phys. Lett. 73B, 53 (1978).CrossRefGoogle Scholar
  13. 13.
    WardR., Phys. Lett. 61B, 81 (1977).CrossRefGoogle Scholar
  14. 14.
    Chau, L.-L., Proc. of the 18th Winter School of Theoretical Physics, Karpacz, Poland, 1981.Google Scholar
  15. 15.
    VolovichI.V., Theor. Math. Phys. 54, 89 (1983); Phys. Lett. 123B, 329 (1983).Google Scholar
  16. 16.
    VolovichI.V., Theor. Math. Phys. 55, 39 (1983).Google Scholar
  17. 17.
    NicolaiH., Phys. Lett. 117B, 408 (1982).CrossRefGoogle Scholar
  18. 18.
    Faddeev, L.D., in Proc. of the Ecole d'Eté de Physique Théorique, Les Houches, 1982.Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • I. V. Volovich
    • 1
  1. 1.Steklov Mathematical InstituteMoscowU.S.S.R.

Personalised recommendations