Letters in Mathematical Physics

, Volume 7, Issue 6, pp 487–496 | Cite as

Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds

  • Marc de Wilde
  • Pierre B. A. Lecomte
Article

Abstract

We prove the existence of star-products and of formal deformations of the Poisson Lie algebra of an arbitrary symplectic manifold. Moreover, all the obstructions encountered in the step-wise construction of formal deformations are vanishing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ArnalD., CortetJ.C., FlatoM., and SternheimerD., ‘Star-Products: Quantization and Representation Without Operators’, in E.Tirapegui (ed.), Field Theory Quantization and Statistical Physics, Reidel, Dordrecht, 1981, pp. 85–111.Google Scholar
  2. 2.
    CahenM. and GuttS., Lett. Math. Phys. 6, 395–404 (1982).Google Scholar
  3. 3.
    De Wilde, M., Gutt, S., and Lecomte, P., ‘A propos des deuxième et troisième espaces de cohomologie de l'algèbre de Lie de Poisson d'une variété symplectique’, Ann. Inst. Poincaré, to appear.Google Scholar
  4. 4.
    DeWildeM. and LecomteP., Lett. Math. Phys. 7, 235–241 (1983).Google Scholar
  5. 5.
    De Wilde, M. and Lecomte, P., ‘Existence of Star-Products on Exact Symplectic Manifolds’, to appear.Google Scholar
  6. 6.
    FlatoM., and SternheimerD. ‘Deformation of Poisson Brackets’, in J.Wolf et al. (eds.), Harmonic Analysis and Representation of Semi Simple Lie Group, Reidel, Dordrecht, 1980, pp. 385–448.Google Scholar
  7. 7.
    GuttS., Ann. Inst. Poincaré 33, 1–31 (1981).Google Scholar
  8. 8.
    LichnerowiczA., Ann. Inst. Fourier 32, 157–209 (1982).Google Scholar
  9. 9.
    MoyalJ.E., Proc. Cambridge Phil. Soc. 45, 99–124 (1949).Google Scholar
  10. 10.
    VeyJ.. Comm. Math. Helv. 50, 421–454 (1975).Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • Marc de Wilde
    • 1
  • Pierre B. A. Lecomte
    • 1
  1. 1.Institut de MathématiqueUniversité de LiègeLiègeBelgium

Personalised recommendations