Advertisement

Letters in Mathematical Physics

, Volume 16, Issue 2, pp 109–116 | Cite as

Stochastic quantisation of a gauge field in the infrared-soft flow gauges

  • S. C. Lim
Article

Abstract

Quantisation of the Abelian gauge field in some classes of the noncovariant infrared-soft gauges can be carried out consistently based on the classical field equations and the basic principles of stochastic mechanics.

Keywords

Statistical Physic Basic Principle Group Theory Field Equation Gauge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parisi, G. and Wu, Yong-Shi, Sci. Sin. 24, 483 (1981).Google Scholar
  2. 2.
    Damgaard, P. H. and Hüffel, H., Phys. Rep. 152, 227 (1987).CrossRefGoogle Scholar
  3. 3.
    Nelson, E., Dynamical Theories of Brownian Motion, Princeton University Press, N.J., 1967.Google Scholar
  4. 4.
    Nelson, E., Quantum Fluctuations, Princeton University Press, N.J., 1985.Google Scholar
  5. 5.
    Blanchard, Ph., Combe, Ph., and Zheng, W., Mathematical and Physical Aspects of Stochastic Mechanics, Lecture Notes in Physics 281, Springer-Verlag, Berlin, 1987.Google Scholar
  6. 6.
    Guerra, F., Phys. Rep. 77 263 (1981).CrossRefGoogle Scholar
  7. 7.
    Chan, H. S. and Halpern, M. B., Phys. Rev. D33, 540 (1985).Google Scholar
  8. 8.
    Caracciolo, S., Curci, G., and Menotti, P., Phys. Lett 113B, 311 (1982).CrossRefGoogle Scholar
  9. 9.
    Lim, S. C., Phys. Lett. 149B, 201 (1984).CrossRefGoogle Scholar
  10. 10.
    Slavnov, A. A. and Frolov, S. A., Theo. Math. Phys. 68, 885 (1986).Google Scholar
  11. 11.
    Cheng, H. and Tsai, E. C., Phys. Rev. Lett. 57, 511 (1987).CrossRefGoogle Scholar
  12. 12.
    Yamagishi, H., Phys. Lett. 189B, 161 (1987).CrossRefGoogle Scholar
  13. 13.
    Landshoff, P. V., Phys. Lett. 169B, 69 (1986).CrossRefGoogle Scholar
  14. 14.
    Steiner, F., Phys. Lett. 173B, 321 (1986).CrossRefGoogle Scholar
  15. 15.
    Cheng, H. and Tsai, E. C., Phys. Rev. 34D, 3858 (1986).Google Scholar
  16. 16.
    Guerra, F. and Loffredo, M. I., Lett. Nuovo Cim. 27, 43 (1980).Google Scholar
  17. 17.
    Davidson, M., Lett. Math. Phys. 4, 101 (1980).Google Scholar
  18. 18.
    Arnold, L., Stochastic Differential Equations, Wiley-Interscience, New York, 1974.Google Scholar
  19. 19.
    Nelson, E., J. Funct. Anal. 12, 211 (1973).CrossRefGoogle Scholar
  20. 20.
    Rozanov, Y. A., Markov Random Fields, Springer-Verlag, Berlin, 1982.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • S. C. Lim
    • 1
  1. 1.Research Centre BiBoSUniversität BielefeldBielefeld 1F.R.G.

Personalised recommendations