Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Decomposition of 14C-labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi


Five different species of known ecto-mycorrhizal fungi: Cenococcum geophilum, Amanita muscaria, Tricholoma aurantium, Rhizopogon luteolus and Rhizopogon roseolus were studied for their ability to metabolize the major components of plant cell walls. All strains were able to decompose 14C-labelled plant lignin, 14C-lignocellulose and 14C-DHP-lignin at a rate which was lower than the one observed for the known white rot fungi Heterobasidion annosum and Sporotrichum pulverulentum. Also 14C-(U)-holocellulose was relatively less degradable for the mycorrhizal fungi than for the white rotters. On the other hand, aromatic monomers like 14C-vanillic acid were decomposed to a much higher extent by two species of mycorrhizal fungi compared to the activity observed for Heterobasidion annosum. The results of the experiments reveal that these stains of mycorrhizal fungi are well able to utilize the major components of plant material and thus can contribute to litter decomposition in the forest floor.

This is a preview of subscription content, log in to check access.


  1. Ander P, Eriksson KE (1976) The importance of phenol oxidase activity in lignin degradation by the white rot fungus Sporotrichum pulverulentum. Arch Microbiol 109:1–8

  2. Björkman E (1942) Über die Bedingungen der Mykorrhizabildung bei Kiefer und Fichte. Symb Bot Upsal 6:1–191

  3. Björkman E (1944) The effect of strangulation on the formation of mycorrhiza in pine. Svensk Bot Tidskr 43:223–262

  4. Björkman E (1970) Mycorrhiza and tree nutrition in poor forest soils. Stud Forest Suec 83:1–24

  5. Curtis H (1975) Biology. Worth Publ, New York

  6. Falck R, Falck M (1954) Die Bedeutung der Fadenpilze als Symbionten der Pflanzen für die Waldkultur. JD Sauerländers Verl, Frankfurt/M

  7. Frank B (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dt Bot Ges 3:128–145

  8. Haars A, Hüttermann A (1980) Macromolecular mechanism of lignin degradation by Fomes annosus. Naturwissenschaften 67:38–40

  9. Haider K, Lim SU (1965) Darstellung von Coniferyl- und Synapinalkohol markiert in den Methoxylgruppen durch 14C. J Labell Comp 1:294–299

  10. Haider K, Trojanowski J (1975) Decomposition of specifically 14C-labelled phenols and dehydropolymers of coniferyl alcohol as models for lignin degradation by soft and rot fungi. Arch Microbiol 105:33–41

  11. Haider K, Trojanowski J (1980) A comparison of the degradation of 14C-labelled DHP and corn stalk lignins by micro- and macrofungi and bacteria. In: Kirk TK, Higuchi T, Chang HM (eds) Lignin biodegradation. CRC-Press. Boca Raton, Florida, pp 111–134

  12. Hering TF (1982) Decomposing activity of basidiomycetes. In: Frankland JC, Hedger JN, Swift MJ (eds) Decomposer basidiomycetes, their biology and ecology. Univ Press, Cambridge, pp 213–225

  13. Kropp BR (1982) Fungi from decayed wood as ectomycorrhizal symbionts of western hemlock. Can J For Res 12:36–39

  14. Lewis DH, Harley JL (1965a) Carbohydrate physiology of mycorrhizal roots of beech. I. Identity of endogenous sugars and utilization of exogenous sugars. New Phytol 64:224–237

  15. Lewis DH, Harley JL (1965b) Carbohydrate physiology of mycorrhizal roots of beech. II. Utilization of exogenous sugars by uninfected and mycorrhizal roots. New Phytol 64:238–255

  16. Lewis DH, Harley JL (1965c) Carbohydrate physiology of mycorrhizal roots of beech. III. Movement of sugars between host and fungus. New Phytol 64:256–269

  17. Lyr H (1963) Zur Frage des Streuabbaus durch ektotrophe Mycorrhizapilze. Mykorrhiza, Intern Mykorrhiza Symp, 25.–30. April 1960, Weimar. Fischer, Jena, pp 123–142

  18. MacDougal DT, Dufrency J (1944) Study of symbiosis of Monterey pine with fungi. Yearb Amer Phil Soc 1944:170–174

  19. Melin E, Nilsson N (1957) Transport of 14C-labelled photosynthetate to the fungal associate of pine mycorrhiza. Svensk Bot Tidskr 51:116–186

  20. Moser M (1958) Die künstliche Mykorrhizaimpfung an Forstpflanzen. Forstw Centrbl 77:32–40

  21. Norkrans B (1950) Studies in growth and cellulolytic enzymes of Tricholoma. Symb Bot Uppsala 11:1–126

  22. Reid JD, Seifert KA (1982) Effect of an atmosphere of oxygen on growth, respiration and lignin degradation by white rot fungi. Can J Bot 60:252–260

  23. Romell LG (1938) A trenching experiment in spruce forest and its bearing on problems of mycotrophy. Svensk Bot Tidskr 32:87–99

  24. Sauerbeck D (1960) Zur Markierung von Pflanzen mit 14C. Atompraxis 6:221–225

  25. Schlegel G (1981) Allgemeine Mikrobiologie, 5. Aufl. Thieme, Stuttgart

  26. Trappe J (1962) Fungus associates of ectotrophic mycorrhiza. Bot Rev 28:538–606

  27. Wise EL (1946) Bestimmung der Holocellulose mit Natriumchlorit. Techn Assoc Papers 29:210–219

  28. Zweck S, Hüttermann A, Chet I (1978) A convenient method for preparing inocula homogenized mycelia. Exp Mycol 2:377–378

Download references

Author information

Correspondence to J. Trojanowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Trojanowski, J., Haider, K. & Hüttermann, A. Decomposition of 14C-labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Arch. Microbiol. 139, 202–206 (1984). https://doi.org/10.1007/BF00402000

Download citation

Key words

  • Mycorrhizal fungi
  • Lignin degradation
  • Litter decomposition
  • Lignocellulose degradation
  • 14C-DHP degradation