In-vitro protein interactions with a bioactive gel-glass

  • K. D. Lobel
  • L. L. Hench


Recent theories suggest that the local adsorption of biologically active peptide growth factors onto the surface of an implant may contribute to the unique osteogenic nature of silica-containing bioactive ceramics. A sol-gel derived glass is used as a model of the in-vivo reaction product of 45S5 bioactive glass at relatively short times (<48 hrs.) to investigate protein adsorption/desorption behavior. The adsorption kinetics of three heme-class proteins (cytochrome c, myoglobin, and hemoglobin) are measured spectroscopically. The rate of adsorption is shown to increase with average pore size, which is determined by the silica content of the gel. Adsorption rate decreases as protein size is increased and as solution pH is decreased. Biological function of an adsorbed peroxidase enzyme on pre-reacted Bioglass® is shown to be retained. Desorption during physiologic conditions is shown to be linear with time and pH dependant, while independent of gel bioactivity.


sol-gel bioactive protein adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Transactions of the Society for Biomaterials, XVII (Society for Biomaterials, Minneapolis, 1994).Google Scholar
  2. 2.
    R.A.Messing, J. Amer. Chem. Soc. 91(9), 2370 (1969).Google Scholar
  3. 3.
    S.Kondo, E.Amano, and M.Kurimoto, Pure & Appl. Chem. 61(11), 1897 (1989).Google Scholar
  4. 4.
    D.R.Lu and K.Park, J. of Coll. and Interf. Sci. 144(1), 271 (1991).Google Scholar
  5. 5.
    J.J.Ramsden and J.E.Prenosil, J. Phys. Chem. 98, 5376 (1994).Google Scholar
  6. 6.
    T.Sanada et al., J. of Biomed. Mat. Res. 20, 1179 (1986).Google Scholar
  7. 7.
    L.Feng and J.D.Andrade, J. of Biomed. Mat. Res. 28, 735 (1994).Google Scholar
  8. 8.
    N.Kossovsky and C.J.Freiman, Arch. Pathol. Lab. Med. 118, 686 (1994).Google Scholar
  9. 9.
    M.Kawamura et al., Clin. Orthop. and Related Res. 217, 281 (1987).Google Scholar
  10. 10.
    R.S.Pandurangi et al., Envir. Health Persp. 86, 327 (1990).Google Scholar
  11. 11.
    L.L.Hench, in An Introduction to Bioceramics, edited by L.L.Hench (World Scientific, Singapore, 1993), Chapter 3.Google Scholar
  12. 12.
    U.Ripamonti et al., Plastic and Reconstr. Surg. 90(3), 382 (1992).Google Scholar
  13. 13.
    L.R.Snyder, Principles of Adsorption Chromatography (Marcel Dekker, Inc., New York, 1968).Google Scholar
  14. 14.
    M.Gorbunoff, J. Anal. Biochem. 136, 425 (1984).Google Scholar
  15. 15.
    H.H.Weetall and R.A.Messing, in The Chemistry of Biosurfaces, edited by M.L.Hair (Dekker, New York, 1972), p. 517.Google Scholar
  16. 16.
    L.M.Ellerby et al., Science 255, 1113 (1992).Google Scholar
  17. 17.
    D. Avnir, S. Braun, and M. Ottolenghi, in Supramolecular Architecture: Synthetic Control in Thin Films and Solids, edited by T. Bein (ACS Symposium Series 499, 1992), p. 384.Google Scholar
  18. 18.
    P.L.Edmiston et al., J. of Coll. and Interf. Sci. 163, 395 (1994).Google Scholar
  19. 19.
    D.Avner et al., Chem. Mater. 6, 1605 (1994).Google Scholar
  20. 20.
    W.A.Woodhouse, J.I.Weitz, and J.L.Brash, J. Biomed. Mater. Res. 28(4), 407 (1994).Google Scholar
  21. 21.
    J.P.Zhong, G.P.Latorre, and L.L.Hench, in Bioceramcis, edited by O.H.Andersson, R.-P.Happonen, and A.Yli-Urpo (Butterworth-Heinemann, Oxford, 1994), Vol. 7, p. 61.Google Scholar
  22. 22.
    L.L.Hench, in Bioceramcis, edited by O.H.Andersson, R.-P.Happonen, and A.Yli-Urpo (Butterworth-Heinemann, Oxford, 1994), Vol. 7, p. 3.Google Scholar
  23. 23.
    E.Carlisle, in Silicon Biochemistry, edited by D.Evered and M.O'Connor (Wiley, New York, 1986), p. 123.Google Scholar
  24. 24.
    K.Schwarz and D.B.Milne, Nature 239, 333 (1972).Google Scholar
  25. 25.
    M.Hott et al., Calcif. Tiss. Int. 53, 174 (1993).Google Scholar
  26. 26.
    P.E.Keeting et al., J. of Bone and Min. Res. 7(11), 1281 (1992).Google Scholar
  27. 27.
    R.Li, A.E.Clark, and L.L.Hench, J. of Appl. Biomat. 2, 231 (1991).Google Scholar
  28. 28.
    M.D.M. Pereria, Ph.D. Dissertation, University of Florida (1994).Google Scholar
  29. 29.
    P.G.Squire and M.E.Himmel, Arch. of Biochem. and Biophy. 196, 165 (1979).Google Scholar
  30. 30.
    P.G.Righetti and G.Tudo, J. of Chromatography 220, 115 (1981).Google Scholar
  31. 31.
    S.J.Baum, in Intro. to Organic and Biological Chemistry, 3rd ed. (Macmillan, New York, 1982).Google Scholar
  32. 32.
    G.LaTorre and L.L.Hench, in Handbook on Characterization Techniques for the Solid-Solution Interface, edited by J.H.Adair, J.A.Casey, and S.Venigalla (Amer. Cer. Soc., Westerville, OH, 1993), p. 177.Google Scholar
  33. 33.
    R.K.Iler, in The Chemistry of Silica (John Wiley and Sons, New York, 1979).Google Scholar
  34. 34.
    M.vanHolte, in Biochemistry (Benjamin/Cummings Publ., New York, 1990).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • K. D. Lobel
    • 1
  • L. L. Hench
    • 1
  1. 1.Advanced Materials Research Center Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations