Skip to main content
Log in

A topological theory of the electromagnetic field

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that Maxwell equations in vacuum derive from an underlying topological structure given by a scalar field ϕ which represents a map S 3×RS 2 and determines the electromagnetic field through a certain transformation, which also linearizes the highly nonlinear field equations to the Maxwell equations. As a consequence, Maxwell equations in vacuum have topological solutions, characterized by a Hopf index equal to the linking number of any pair of magnetic lines. This allows the classification of the electromagnetic fields into homotopy classes, labeled by the value of the helicity. Although the model makes use of only c-number fields, the helicity always verifies ∫ A·Bd3 r=nα, n being an integer and α an action constant, which necessarily appears in the theory, because of reasons of dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DiracP. A. M., Proc. Roy. Soc. A133, 60 (1931).

    Google Scholar 

  2. AharonovY. and BohmD., Phys. Rev. 115, 485 (1959).

    Google Scholar 

  3. HooftG. 't, Nucl. Phys. B79, 276 (1974); Polyakov, A. M., JETP Lett. 20, 194 (1974).

    Google Scholar 

  4. SkyrmeT. H., Proc. Roy. Soc. A247, 260 (1958).

    Google Scholar 

  5. BerryM. V., Proc. Roy. Soc. London, Ser. A 392, 45 (1984) and in V. Gorini and A. Frigerio, (eds), Fundamental Aspects of Quantum Theory, Plenum Press, New York (1986).

    Google Scholar 

  6. VakulenkoA. F. and KapitanskiL. V., Dokl. Acad. Nauk USSR 246, 840 (1979).

    Google Scholar 

  7. VladimirovS. A., Teor. Mat. Fitz. (Sov. Phys.) 44, 410 (1980).

    Google Scholar 

  8. BelavinA. A. and PolyakovA. M., JETP Lett. 22, 245 (1975).

    Google Scholar 

  9. JackiwR., in E. S. Fradkin Festschrift, Adam Hilger, Bristol (1985).

    Google Scholar 

  10. JackiwR., Rev. Mod. Phys. 52, 661 (1980) and in R. Raitio and J Linfords (eds), Gauge Theories in the Eighties, Lecture Notes in Physics 181, Springer, Berlin (1983).

    Google Scholar 

  11. CalogeroF., in V. E.Zakharov (ed), What is Integrability (for Nonlinear PDEs)?, Springer, New York (1988).

    Google Scholar 

  12. FlatoM. and FronsdalC., Phys. Lett. B172, 412 (1986).

    Google Scholar 

  13. HopfH., Math. Annalen, 104, 637 (1931).

    Google Scholar 

  14. BottR. and TuL. W., Differential Forms in Algebraic Topology, Springer-Verlag, New York (1982).

    Google Scholar 

  15. NicoleD. A., J. Phys. G: Nucl. Phys. 4, 1363 (1978).

    Google Scholar 

  16. KunduA. and RybakovYu. P., J. Phys. A: Math. Gen. 15, 269 (1982).

    Google Scholar 

  17. WhiteheadJ. H. C., Proc. Natl. Acad. Sci. USA 33, 117 (1947).

    Google Scholar 

  18. KunduA., Phys. Lett. B171, 67 (1986).

    Google Scholar 

  19. KunduA., Ann. Phys. 139, 36 (1982).

    Google Scholar 

  20. WoltjerL., Proc. Natl. Acad. Sci. USA 44, 489 (1958).

    Google Scholar 

  21. TaylorJ. B., Rev. Mod. Phys. 58, 741 (1986).

    Google Scholar 

  22. MoffattH. K., J. Fluid Mech. 106, 27 (1981).

    Google Scholar 

  23. LambH., Hydrodynamics, Dover, New York (1945).

    Google Scholar 

  24. KutnetsovE. A. and MikhailovA. V., Phys. Lett. 77A, 37 (1980).

    Google Scholar 

  25. Rañada, A. F., Knotted solutions of Maxwell equations in vacuum, Preprint Universidad Complutense, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rañada, A.F. A topological theory of the electromagnetic field. Lett Math Phys 18, 97–106 (1989). https://doi.org/10.1007/BF00401864

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00401864

AMS subject classifications (1980)

Navigation