Marine Biology

, Volume 93, Issue 3, pp 449–457 | Cite as

Suspected mechano- and chemosensory structures of Temora longicornis (Copepoda: Calanoida)

  • C. W. Gill


The antennulary (A1) setae of Temora longicornis Müller are suspected of being mechanosensory. In the present study, the fine structure of the antennule, setae and pegs was examined by scanning and transmission electron microscopy. Two setae arise proximal to each antennule segment junction. The supraaxial (Type 1) seta of each pair is innervated by a pair of ciliary dendrites and has the morphological characteristics of a mechanoreceptor. The sub-axial (Type 2) seta may be chemosensory, and is innervated by a varying number of dendrites, but always more than two. The antennulary pegs do not appear to be innervated. T. longicornis is directionally sensitive to water disturbances, and this is consistent with the physical structure of the setae. Integumental structures on the body and other non-feeding appendages are described. These observations support previous behavioural experiments which suggested the antennule to be the major site for mechanoreception in copepods; however, mechanoreceptors must also occur on other parts of the body.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Ache, B. W.: Chemoreception and thermoreception. In: The biology of Crustacea. Vol. 3. Neurobiology: structure and function, pp 369–398. Ed. by H. L. Atwood and D. C. Sandeman. New York: Academic Press 1982Google Scholar
  2. Bailey, K. M. and J. Yen: Predation by a carnivorous marine copepod Euchaeta elonga on eggs and larvae of the Pacific hake Merluccius productus. J. Plankton Res. 5, 71–82 (1983)Google Scholar
  3. Blades, P. I. and M. J. Youngbluth. Mating behavior of Labidocera aestiva (Copepoda: Calanoida). Mar. Biol. 51, 339–355 (1979)Google Scholar
  4. Blades, P. I. and M. J. Youngbluth: Morphological, physiological and behavioural aspects of mating in calanoid copepods. In: Evolution and ecology of zooplankton communities, pp 39–51. Ed. by W. C. Kerfoot. Hanover: University Press of New England 1980Google Scholar
  5. Bush, B. M. H. and M. S. Laverack: Mechanoreception. In: The biology of Crustacea, Vol. 3. pp 399–468. Ed. by H. L. Atwood and D. C. Sandeman. New York: Academic Press 1982Google Scholar
  6. Camhi, J. M.: The escape response of the cockroach. Scient. Am. 243, 144–156 (1980)Google Scholar
  7. Chapman, K. M., J. L. Mosinger and R. B. Duckrow: The role of distributed viscoelatic coupling in sensory adaptation in an insect mechanoreceptor. J. comp. Physiol. 131, 1–12 (1979)Google Scholar
  8. Clarac, F. et J. P. Vedel: Etude electrophysiologique du recepteur hydrodynamique de l'antenne de la langouste, Palinurus vulgaris. C. r. hebd. Séanc. Acad. Sci., Paris 276, 603–606 (1973)Google Scholar
  9. Conover, R. J.: Feeding on large particles by Calanus hyperboreus. In: Some contempory studies in marine science, pp 187–194. Ed. by H. Barnes, London: Allen & Unwin 1966Google Scholar
  10. Elofsson, R.: The ultrastructure of a chemoreceptor organ in the head of copepod crustaceans. Acta. zool., Stockh 52, 299–315 (1971)Google Scholar
  11. Fleminger, A.: Pattern, number, variability and taxonomic significance of integumental organs in Eucalanus (Copepoda: Calanoida). Fish. Bull. U.S. 71, 965–1010 (1973)Google Scholar
  12. Fleminger, A.: Dimorphism and possible sex change in copepods of the family Calanidae. Mar. Biol. 88, 273–294 (1985)Google Scholar
  13. Friedman, M. M.: Comparative morphology and functional significance of copepod receptors and oral structures. In: Evolution and ecology of zooplankton communities, pp 185–197. Ed. by W. C. Kerfoot. Hanover: University Press of New England 1980Google Scholar
  14. Friedman, M. M. and J. R. Strickler: Chemoreceptors and feeding in calanoid copepods. Proc. natn. Acad. Sci. U.S.A. 72, 4185–4188 (1975)Google Scholar
  15. Ghiradella, H. T., J. F. Case and J. Cronshaw: Structure of aesthetes in selected marine and terrestial decapods: chemoreceptor morphology and environment. Am. Zool. 8, 603–621 (1968)PubMedGoogle Scholar
  16. Gill, C. W.: The swimming responses of planktonic organisms, particularly Temora longicornis Müller, 212 pp. Ph. D. thesis. Bangor, University of Wales 1983. (Unpublished)Google Scholar
  17. Gill, C. W.: The response of a restrained copepod to tactile stimulation. Mar. Ecol. Prog. Ser. 21, 121–125 (1985)Google Scholar
  18. Gill, C. W. and D. J. Crisp: Sensitivity of intact and antennule amputated copepods to water disturbance. Mar. Ecol. Prog. Ser. 21, 221–227 (1985)Google Scholar
  19. Gophen, M. and R. P. Harris: Visual predation by a marine cyclopoid copepod, Corycaeus anglicus. J. mar. biol. Ass. U.K. 61, 391–399 (1981)Google Scholar
  20. Gregory, R. L., H. E. Ross and N. Moray: The curious eye of Copilia (Crustacea: Copepoda). Nature, Lond. 201, 1166–1168 (1964)Google Scholar
  21. Griffiths, A. M. and B. W. Frost: Chemical communication in the marine planktonic copepods Calanus pacificus and Pseudocalanus specificus. Crustaceana 30, 1–8 (1976)Google Scholar
  22. Haury, L. R., D. E. Kenyon and J. R. Brooks: Experimental evaluation of the avoidance reaction of Calanus finmarchicus. J. Plankton Res. 2, 187–202 (1980)Google Scholar
  23. Jacoby, C. A. and M. J. Youngbluth: Mating behaviour in three species of Pseudodiaptomus (Copepoda: Calanoida). Mar. Biol. 76, 77–86 (1983)Google Scholar
  24. Katona, S. K.: Evidence for sex pheromones in planktonic copepods. Limnol. Oceanogr. 18, 574–583 (1973)Google Scholar
  25. Kerfoot, W. C.: Combat between predatory copepods: Cyclops, Epischura and Bosmina. Limnol. Oceanogr. 23, 1089–1102 (1978)Google Scholar
  26. Kerfoot, W. C., D. L. Kellogg, Jr. and J. R. Strickler: Visual observations of live zooplankters: evasion, escape and chemical defences. In: Evolution and ecology of zooplankton communities, pp 10–27. Ed. by W. C. Kerfoot. Hanover: University Press of New England 1980Google Scholar
  27. Kittredge, J. S., F. T. Takahashi, J. Lindsey and R. Lasker: Chemical signals in the sea: marine allelochemics and evolution. Fish. Bull. U.S. 72, 1–11 (1974)Google Scholar
  28. Landry, M. R.: Predatory feeding behaviour of a marine copepod, Labidocera trispinosa. Limnol. Oceanogr. 23, 1103–1113 (1978)Google Scholar
  29. Landry, M. R.: Detection of prey by Calanus pacificus: implications of the 1st antennae. Limnol. Oceanogr. 25, 545–549 (1980)Google Scholar
  30. Laverack, M. S.: On the receptors of marine invertebrates. Oceanogr. mar. Biol. A. Rev. 6, 249–324 (1968)Google Scholar
  31. Laverack, M. S.: External proprioceptors. In: Structure and function of proprioceptors in the invertebrates, pp 1–63. Ed. by P. J. Mill. London: Chapman & Hall 1976Google Scholar
  32. Laverack, M. S. and D. Ardhill: The innervation of the aesthetasc hairs of Panulirus argus. Q. Jl microsc. Sci. 106, 45–60 (1965)Google Scholar
  33. Lillelund, K. and R. Lasker: Laboratory studies of predation by marine copepods on fish larvae. Fish. Bull. U.S. 69, 655–667 (1971)Google Scholar
  34. Malt, S. J.: Polymorphism and pore signature patterns in the copepod genus Oncaea, (Cyclopoida). J. mar. biol. Ass. U.K. 63, 449–466 (1983)Google Scholar
  35. Mauchline, J.: The integumental sensilla and glands of pelagic Crustacea. J. mar. biol. Ass. U.K. 57, 973–994 (1977)Google Scholar
  36. McIver, S. B.: Structure of cuticular mechanoreceptors of arthropods. A. Rev. Ent. 20, 381–397 (1975)CrossRefGoogle Scholar
  37. Ong, J. E.: The fine structure of the mandibular sensory receptors in the brackish water calanoid copepod Gladioferens pectinatus. Z. Zellforsch. 97, 178–195 (1969)PubMedGoogle Scholar
  38. Paffenhöfer, G.-A. and K. B. Van Sant: The feeding response of a marine calanoid copepod (Arthropoda: Crustacea). Science, N.Y. 200, 1403–1405 (1978)Google Scholar
  39. Park, T. S.: The biology of a calanoid copepod, Epilabidocera amphitrites. Cellule 66, 129–251 (1966)Google Scholar
  40. Poulet, S. A. and P. Marsot: Chemosensory grazing by marine calanoid copepods (Arthropoda: Crustacea). Science, N.Y. 200, 1403–1405 (1978)Google Scholar
  41. Poulet, S. A. and P. Marsot: Chemosensory feeding and food gathering by omnivorous marine copepods. In: Evolution and ecology of zooplankton communities, pp 198–238. Ed. by W. C. Kerfoot. Hanover: University Press of New England 1980Google Scholar
  42. Poulet, S. A. and G. Ouellet. The role of amino acids in the chemosensory swarming and feeding behaviour of marine copepods. J. Plankton Res. 4, 341–361 (1982)Google Scholar
  43. Reynolds, E. S.: On the use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)CrossRefPubMedGoogle Scholar
  44. Shelton, R. G. J. and M. S. Laverack: Observations on a redescribed crustacean cuticular sense organ. Comp. Biochem. Physiol. 25, 1049–1059 (1968)CrossRefGoogle Scholar
  45. Singerajah, K. V.: Escape reactions of zooplankton: effects of light and turbulence. J. mar. biol. Ass. U.K. 55, 627–639 (1975)Google Scholar
  46. Spurr, A. R.: A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)PubMedGoogle Scholar
  47. Strickler, J. R.: Swimming of planktonic Cyclops species (Copepoda: Crustacea): Pattern, movements and their control. In: Swimming and flying in nature, Vol. 2 pp 599–613. Ed. by Y.-T. Wu, C. J. Brokaw and C. Brennen. New York: Plenum Press 1975aGoogle Scholar
  48. Strickler, J. R.: Intra- and inter-specific information flow among planktonic copepods: receptors. Verh. int. Verein. theor. angew. Limnol. 19, 2951–2958 (1975b)Google Scholar
  49. Strickler, J. R. and A. K. Bal: Setae of the 1st antennae of the copepod Cyclops scutifer: their structure and importance. Proc. natn. Acad. Sci. U.S.A. 70, 2656–2659 (1973)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • C. W. Gill
    • 1
  1. 1.Centre d'Etudes d'Océanographie et de Biologie Marine de RoscoffCentre National de la Recherche Scientifique, Station BiologiqueRoscoffFrance

Personalised recommendations