Diabetologia

, Volume 35, Issue 3, pp 261–266

Detection of mutations in the insulin receptor gene in patients with insulin resistance by analysis of single-stranded conformational polymorphisms

  • H. Kim
  • H. Kadowaki
  • H. Sakura
  • M. Odawara
  • K. Momomura
  • Y. Takahashi
  • Y. Miyazaki
  • T. Ohtani
  • Y. Akanuma
  • Y. Yazaki
  • M. Kasuga
  • S. I. Taylor
  • T. Kadowaki
Originals

Summary

We analyzed single-stranded conformational poly morphisms to screen for mutations and polymorphisms in the insulin receptor gene in subjects with or without insulin resistance. Using this new technique, we demonstrated the existence of mutations in the insulin receptor gene which we had identified previously. In addition, a new mutation was found in exon 20 of the insulin receptor gene in a patient with moderate insulin resistance associated with morbid obesity, acanthosis nigricans, and polycystic ovary syndrome. The patient was heterozygous for a mutation substituting Leu (CTG) for Pro (CCG) at codon 1178. Pro1178 is a part of a characteristic sequence motif (D1150 F1151 G1152-A1177 P1178 E1179) common to many protein kinases. Analysis of single-stranded conformational polymorphisms was also used to estimate the frequency of a polymorphism at codon 1058. The two codons CAC (1058 His) and CAT (1058 His) both had a prevalence of 50% in 30 Japanese subjects. These data demonstrate that analysis of single-stranded conformational polymorphisms is a simple and sensitive screening method for mutations and polymorphisms in the insulin receptor gene in subjects with or without insulin resistance. Identification of a mutation in the insulin receptor gene in a patient with a moderate degree of insulin resistance associated with morbid obesity suggests that insulin receptor mutations may exist in patients with Type 2 (non-insulin-dependent) diabetes mellitus associated with a moderate degree of insulin resistance.

Key words

Hyperinsulinaemia tyrosine kinase activity Type 2 (non-insulin-dependent) diabetes mellitus obesity screening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taylor SI, Kadowaki T, Kadowaki H, Accili D, Cama A, McKeon C (1990) Mutations in the insulin receptor gene in insulin resistant patients. Diab Care 13: 257–279Google Scholar
  2. 2.
    Kadowaki T, Bevins CL, Cama A et al. (1988) Two mutant alleles of the insulin receptor gene in a patient with extreme insulin resistance. Science 240: 787–790PubMedGoogle Scholar
  3. 3.
    Yoshimasa Y, Seino S, Whittaker J et al. (1988) Insulin-resistant diabetes due to a point mutation that prevents insulin proreceptor processing. Science 240: 784–787PubMedGoogle Scholar
  4. 4.
    Kobayashi M, Sasaoka T, Takata Y et al. (1988) Insulin resistance by unprocessed insulin proreceptors — point mutation at the cleavage site. Biochem Biophys Res Comm 153: 657–663PubMedGoogle Scholar
  5. 5.
    Moller DE, Flier JS (1988) Detection of an alteration in the insulin-receptor gene in a patient with insulin resistance, acanthosis nigricans, and the polycystic ovary syndrome (type A insulin resistance). N Engl J Med 319: 1526–1529PubMedGoogle Scholar
  6. 6.
    Odawara M, Kadowaki T, Yamamoto R et al. (1989) Human diabetes associated with a mutation in the tyrosine kinase domain of the insulin receptor. Science 245: 66–68PubMedGoogle Scholar
  7. 7.
    Taira M, Taira M, Hashimoto N et al. (1989) Human diabetes associated with a deletion of the tyrosine kinase domain of the insulin receptor. Science 245: 63–66PubMedGoogle Scholar
  8. 8.
    Accili D, Frapier C, Mosthaf L et al. (1989) A mutation in the insulin receptor gene that impairs transport of the receptor to the plasma membrane and causes insulin resistant diabetes. EMBO J 8: 2509–2517PubMedGoogle Scholar
  9. 9.
    Klinkhamer MP, Groen NA, van der Zon GCM et al. (1989) A leucine-to-proline mutation in the insulin receptor in a family with insulin resistance. EMBO J 8: 2503–2507PubMedGoogle Scholar
  10. 10.
    Kadowaki T, Kadowaki H, Taylor SI (1990) A nonsense mutation causing decreased levels of insulin receptor mRNA: detection by a simplified technique for direct sequencing of genomic DNA amplified by polymerase chain reaction. Proc Natl Acad Sci USA 87: 658–662PubMedGoogle Scholar
  11. 11.
    Kadowaki T, Kadowaki H, Rechler MM et al. (1990) Five mutant alleles of the insulin receptor gene in patients with genetic forms of insulin resistance. J Clin Invest 86: 254–264PubMedGoogle Scholar
  12. 12.
    Moller DF, Yokota A, White MF, Pazianos AG, Flier JS (1990) A naturally occuring mutation of insulin receptor Ala1134 impairs tyrosine kinase function and is associated with dominantly inherited insulin resistance. J Biol Chem 265: 14979–14985PubMedGoogle Scholar
  13. 13.
    Shimada F, Taira M, Suzuki Y et al. (1990) Insulin-resistant diabetes associated with partial deletion of insulin receptor gene. Lancet 335: 1179–1181CrossRefPubMedGoogle Scholar
  14. 14.
    Kusari J, Takata Y, Hatada E, Freidenberg G, Kolterman O, Olefsky JM (1991) Insulin resistance and diabetes due to different mutations in the tyrosine kinase domain of both insulin receptor gene alleles. J Biol Chem 266: 5260–5267PubMedGoogle Scholar
  15. 15.
    Cama A, Sierra ML, Ottini L et al. (1991) A mutation in the tyrosine kinase domain of the insulin receptor associated with insulin resistance in an obese woman. J Clin Endocrinol Metab 73: 894–901PubMedGoogle Scholar
  16. 16.
    Imano E, Kadowaki H, Kadowaki T et al. (1991) Two patients with insulin resistance due to decrease levels of insulin receptor mRNA. Diabetes 40: 548–557PubMedGoogle Scholar
  17. 17.
    Kadowaki T, Kadowaki H, Ando A et al. (1991) Two mutant alleles of the insulin receptor gene in insulin resistant patients. Endocrinology 128 [Suppl]: 310 (Abstract)Google Scholar
  18. 18.
    Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86: 2766–2770PubMedGoogle Scholar
  19. 19.
    Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874–879PubMedGoogle Scholar
  20. 20.
    Japan Diabetic Society Expert Committee Report (1982) Classification and diagnosis of diabetes mellitus. J Jpn Diabetic Soc 25: 859–866Google Scholar
  21. 21.
    Seino S, Seino M, Nishi S, Bell GI (1989) Structure of the human insulin receptor gene and characterization of its promoter. Proc Natl Acad Sci USA 86: 114–118PubMedGoogle Scholar
  22. 22.
    Seino S, Seino M, Bell GI (1990) Human insulin receptor gene: partial sequence and amplification of exons using the polymerase chain reaction. Diabetes 39: 123–128PubMedGoogle Scholar
  23. 23.
    Saiki RK, Scharf S, Faloona F et al. (1985) Enzymatic amplification of β-globulin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354PubMedGoogle Scholar
  24. 24.
    Grompe M, Muzny DM, Caskey CT (1989) Scanning detection of mutations in human ornithine transcarbamoylase by chemical mismatch cleavage. Proc Natl Acad Sci USA 86: 5888–5892PubMedGoogle Scholar
  25. 25.
    Myers RM, Larin Z, Maniatis T (1985) Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA: DNA duplex. Science 230: 1242–1246PubMedGoogle Scholar
  26. 26.
    Landegren U, Kaiser R, Caskey CT, Hood L (1988) DNA diagnostics-molecular techniques and automation. Science 242: 229–237PubMedGoogle Scholar
  27. 27.
    Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86: 232–236PubMedGoogle Scholar
  28. 28.
    Myers RM, Fischer SG, Maniatis T, Lerman LS (1985) Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing grandient gel electrophoresis. Nucleic Acid Res 13: 3111–3129PubMedGoogle Scholar
  29. 29.
    Cawthon RM, Weiss R, Xu G et al. (1990) A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62: 193–201CrossRefPubMedGoogle Scholar
  30. 30.
    Dean M, White MB, Amos J et al. (1990) Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients. Cell 61: 863–870CrossRefPubMedGoogle Scholar
  31. 31.
    Kahn CR, Flier JS, Bar RS et al. (1976) The syndromes of insulin resistance and acanthosis nigricans. Insulin-receptor disorders in man. N Engl J Med 294: 739–745PubMedGoogle Scholar
  32. 32.
    Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52PubMedGoogle Scholar
  33. 33.
    O'Rahilly S, Choi WH, Patel P, Turner RC, Flier JS, Moller DE (1991) Detection of mutations in insulin-receptor gene in NIDDM patients by analysis of single-stranded conformation polymorphisms. Diabetes 40: 777–782PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • H. Kim
    • 1
  • H. Kadowaki
    • 2
  • H. Sakura
    • 1
  • M. Odawara
    • 1
  • K. Momomura
    • 1
  • Y. Takahashi
    • 1
  • Y. Miyazaki
    • 3
  • T. Ohtani
    • 4
  • Y. Akanuma
    • 2
  • Y. Yazaki
    • 1
  • M. Kasuga
    • 5
  • S. I. Taylor
    • 6
  • T. Kadowaki
    • 1
    • 2
  1. 1.The Third Department of Internal Medicine, Faculty of MedicineUniversity of TokyoJapan
  2. 2.Institute for Diabetes Care and ResearchAsahi Life FoundationJapan
  3. 3.Misato Kenwa HospitalMisato
  4. 4.Department of PediatricsTokyo Women's Medical CollegeTokyo
  5. 5.The Second Department of Internal Medicine, Faculty of MedicineKobe UniversityKobeJapan
  6. 6.Diabetes BranchNational Institutes of HealthBethesdaUSA

Personalised recommendations