Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Polyethylene-polyethylene microfibrillar composites

Abstract

Solid-state drawing of melt-crystallized, or gel(solution)-crystallized, polyethylene (PE) is well established as a means of producing high modulus high-strength fibres. Here, an alternative route, based on melt-processing, is reviewed and its merits are assessed. Contrary to expectation, melt processing of flexible chain polymers can directly yield oriented products with good mechanical properties, without the need for post-drawing in the solid state. The melt-processed PE can give a special microfibrillar composite morphology which results in good mechanical properties. The paper also reviews aspects of composites design by comparing these microfibrillar composites with traditional fibre composites and molecular composites.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. A. Odell, D. T. Grubb and A. Keller, Polymer 19 (1978) 617.

  2. 2.

    Z. Bashir, J. A. Odell and A. Keller, J. Mater. Sci. 19 (1984) 617.

  3. 3.

    Idem, ibid. 21 (1986) 3993.

  4. 4.

    Z. Bashir and A. Keller, Colloid Polym. Sci. 267 (1989) 116.

  5. 5.

    G. Capaccio, T. A. Crompton and I. M. Ward, J. Polym. Sci. Polym. Phys. Ed. 14 (1976) 1641.

  6. 6.

    Idem, ibid. 18 (1980) 301.

  7. 7.

    P. Smith, P. J. Lemstra and H. J. Booij, ibid, 19 (1981) 877.

  8. 8.

    W. Hoogsteen, H. Kormelink, G. Eshuis, G. Ten Brinke and A. J. Pennings, J. Mater. Sci. 23 (1988) 3467.

  9. 9.

    A. Peterlin, in “Man Made Fibres”, Vol. 1, edited by H. Mark, S. M. Atlas and E. Cernia (Interscience, New York, 1967) pp. 317.

  10. 10.

    D. Hull, “An Introduction to Composite Materials” (Cambridge University Press, 1981).

  11. 11.

    S. Sato, A. Kurumada, H. Iwaki and Y. Komatsu, Carbon 27 (1989) 791.

  12. 12.

    J. L. White and P. M. Sheaffer, Carbon 27 (1989) 697.

  13. 13.

    R. Wehrenberg, Plastics World, October (1985) 60.

  14. 14.

    Polymer Engineering Course, PT 614, Unit 5, Polymer Composites, Open University (1984), Milton Keynes, UK.

  15. 15.

    D. S. Parker and A. F. Yee, J. Thermoplast. Compos. Mater. 2 (1989) 2.

  16. 16.

    Ciba-Geigy data sheets RTA 100c (April 1985) and FTA 49e (August 1984).

  17. 17.

    S. L. Kaplan, K. Scholle and H. X. Nguyen “High Performance Textiles”, Vol. 9, no. 8, “Properties of high performance PE fibres” (Elsevier, Oxford, 1989) pp. 3–4.

  18. 18.

    E. Helminiak, C. L. Benner, F. E. Arnold and G. E. Husman, US Pat. 4207 407 (1980).

  19. 19.

    S. J. Krause, T. Haddock, G. E. Price, P. G. Lenhart, J. F. O'Brien, T. E. Helminiak and W. W. Adams, J. Polym. Sci. B Polym. Phys. Ed. 24 (1986) 1991.

  20. 20.

    M. Takayanagi, Pure. Appl. Chem. 55 (1983) 819.

  21. 21.

    M. Ballauf, Polym Adv. Technol. 1 (1990) 109.

  22. 22.

    M. M. Coleman, D. J. Skrovanek, H. Hu and P. C. Painter, Macromolecules 21 (1988) 59.

  23. 23.

    G. T. Pawlikowski, D. Dutta and R. A. Weiss, Ann. Rev. Mater. Sci. 21 (1991) 159.

  24. 24.

    J. S. Wallace, Loon-Seng Tan, F. E. Arnold, Polymer 31 (1990) 2411.

  25. 25.

    B. C. Auman and V. Percec, Polymer 29 (1988) 938.

  26. 26.

    T. D. Shaffer and V. Percec, Makromol. Chem. 187 (1986) 111.

  27. 27.

    J. L. Kardos and J. Raisoni, Polym. Engng. Sci. 15 (1975) 183.

  28. 28.

    R. A. Weiss, Wansoo Huh and L. Nicolais, ibid. 27 (1987) 684.

  29. 29.

    A. Siegmann, A. Dagan and S. Senig, Polymer 26 (1985) 1325.

  30. 30.

    E. G. Joseph, G. L. Wilkes and D. G. Baird, Polym. Engng. Sci. 25 (1985) 377.

  31. 31.

    K. G. Blizard and D. G. Baird, ibid. 27 (1987) 653.

  32. 32.

    G. Kiss, ibid. 27 (1987) 410.

  33. 33.

    R. H. Baughman, E. A. Turi, A. F. Pueziosi and K.-C. Yee., US Pat. 4255 535 (1981).

  34. 34.

    M. R. Piggott, “Load Bearing Fibre Composites” editor D. M. R. Taplin (Pergamon Press, Oxford, 1980).

  35. 35.

    T. H. Courtney, in “Mechanical Behaviour of Materials” (McGraw-Hill, 1990) Ch. 6, pp. 248–51.

  36. 36.

    H. Sprenger, H. Richter and J. J. Nickl, J. Mater. Sci. 11 (1976) 2075.

  37. 37.

    I. Sakurada, T. Ito and K. Nakamae, Makromol. Chem. 75 (1964) 1.

  38. 38.

    R. F. Shauffele and T. Shimanouchi, J. Chem Phys. 47 (1967) 3605.

  39. 39.

    D. C. Bassett, “Principles of Polymer Morphology” (Cambridge University Press, 1981).

  40. 40.

    J. W. Weeton, “Engineer's Guide to Composite Materials”, Section 3 (American Society for Metals, Ohio, 1987).

  41. 41.

    T. S. Chung, Z. Gurion and J. B. Stamatoff, Polym. Compos. 6 (1985) 181.

  42. 42.

    W. W. Adams and R. K. Eby, Mater. Res. Soc. Bull., 12 (1987) 22.

  43. 43.

    S. Rastogi and J. A. Odell, Polym. Commun. (1991) submitted.

  44. 44.

    K. A. Narh and A. Keller, Polymer 32 (1991) 2512.

  45. 45.

    A. Keller, J. Dlugosz, M. J. Folkes, E. Pedemont, F. P. Scalisi and F. M. Willmouth, J. Phys. 32 C5a (1971) 295.

  46. 46.

    R. D. B. Fraser, T. P. Macrae, D. A. D. Parry and E. Suzuki, Polymer 12 (1971) 35.

  47. 47.

    R. D. B. Fraser, T. P. Macrae, G. R. Millward, D. A. D. Parry, E. Suzuki and P. A. Tulloch, Appl. Polym. Symp. 18 (1971) 65.

Download references

Author information

Correspondence to Z. Bashir.

Additional information

Dedicated to professor Andrew Keller, FRS, after retirement, as a mark of appreciation for his contributions to the understanding of polymer crystallization, and for allowing us to learn about the subject and encouraging our investigations in a general research environment at Bristol.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bashir, Z., Odell, J.A. Polyethylene-polyethylene microfibrillar composites. Journal of Materials Science 28, 1081–1089 (1993). https://doi.org/10.1007/BF00400896

Download citation

Keywords

  • Polymer
  • Mechanical Property
  • Polyethylene
  • Solid State
  • Chain Polymer