Journal of Materials Science

, Volume 28, Issue 4, pp 963–970 | Cite as

Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface

  • T. Bennett
  • D. Poulikakos


This study investigates the mechanisms that contribute to determining the maximum spreading of a liquid droplet impacting a solid surface in connection with splat-quench solidification. This paper defines two domains, the viscous dissipation domain and the surface tension domain, which are characterized by the Weber and the Reynolds numbers, and that are discriminated by the principal mechanism responsible for arresting the splat spreading. This paper illustrates the importance of correctly determining the equilibrium contact angle (a surface tension characteristic that quantifies the wetting of the substrate) for predicting the maximum spreading of the splat. Conditions under which solidification of the splat would or would not be expected to contribute to terminating the spreading of the splat are considered. However, our a priori assumption is that the effect of solidification on the spreading of a droplet, superheated at impact, is secondary compared to the effects of viscous dissipation and surface tension.



Thermal diffusivity


Correction factor


Correction factor


Initial diameter of droplet


Final diameter of splat


Initial kinetic energy at impact


Rise in surface tension energy


Viscous energy dissipated


Terminal thickness of splat


Spreading time of splat


Velocity of impinging droplet


Volume of splat (droplet)


Space variable


Madejski's solidification parameter


dynamic viscosity


Dissipation function


Density of liquid


Liquid-vapour surface tension


Equilibrium contact angle


D/d (spreading factor)


ud/a (Péclet number)


ρud/μ (Reynolds number)


ρu2d/σ (Weber number)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Jones, Rep. Prog. Phys. 36, (1973) 1425.CrossRefGoogle Scholar
  2. 2.
    B. H. Kear, B. C. Giessen and M. Cohen, in “Rapidly Solidified Amorphous and Crystalline Alloys”, Materials Research Society Symposia Proceedings, Vol. 8 (North-Holland, New York, 1981).Google Scholar
  3. 3.
    B. H. Kear and B. C. Giessen, in “Rapidly Solidified Metastable Materials”, Materials Research Society Symposia Proceedings, Vol. 28 (North-Holland, New York, 1984).Google Scholar
  4. 4.
    M. Tenhover, W. L. Johnson and L. E. Tanner, in “Science and Technology of Rapidly Quenched Alloys”, Materials Research Society Symposia Proceedings, Vol. 80 (Materials Research Society, Pittsburgh, Pennsylvania, 1987).Google Scholar
  5. 5.
    P. G. Boswell, Metals Forum 2 (1979) 40.Google Scholar
  6. 6.
    R. C. Ruhl, Mater. Sci. Engng 1 (1967) 313.CrossRefGoogle Scholar
  7. 7.
    J. Madejski, Int. J. Heat Mass Transfer 19 (1976) 1009.CrossRefGoogle Scholar
  8. 8.
    Idem, ibid. 26 (1983) 1095.Google Scholar
  9. 9.
    R. McPherson, J. Mater. Sci. 15 (1980) 3141.Google Scholar
  10. 10.
    H. Jones, J. Phys. D: Appl. Phys. 4 (1971) 1657.CrossRefGoogle Scholar
  11. 11.
    E. W. Collings, A. J. Markworth, J. K. McCoy and J. H. Saunders, J. Mater. Sci. 25 (1990) 3677.Google Scholar
  12. 12.
    S. Chandra and C. T. Avedisian, in Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Orlando, Florida, December 1990, Paper No. 83.Google Scholar
  13. 13.
    G. J. Dienes and H. F. Klemm, J. Appl. Phys. 17 (1946) 458.Google Scholar
  14. 14.
    A. W. Adamson, “Physical Chemistry of Surfaces”, 4th Edn (Wiley, New York, 1982) pp. 338–340.Google Scholar
  15. 15.
    S. H. Davis, Trans. ASME: J. Appl. Mech. 50 (1983) 977.Google Scholar
  16. 16.
    P. G. de Gennes, Rev. Mod. Phys. 57 (1985) 827.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • T. Bennett
    • 1
  • D. Poulikakos
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations