Advertisement

Diabetologia

, Volume 38, Issue 3, pp 277–282 | Cite as

Intracellular localization and molecular heterogeneity of the sulphonylurea receptor in insulin-secreting cells

  • S. E. Ozanne
  • P. C. Guest
  • J. C. Hutton
  • C. N. Hales
Originals

Summary

Sulphonylureas stimulate insulin secretion by binding to a receptor in the pancreatic beta-cell plasma membrane resulting in inhibition of ATP-sensitive K+ channels, membrane depolarization and thus influx of Ca2+ through voltage-dependent Ca2+ channels. Sulphonylureas can also induce hormone release at fixed membrane potentials without Ca2+ entry suggesting that these drugs may have other modes of action. We have determined whether different forms of sulphonylurea-binding proteins are present in insulin-secreting cells and their subcellular localization by density gradient centrifugation. Binding studies using [3H]-glibenclamide showed that islet and insulinoma membranes contained a single high affinity sulphonylurea binding site (Kd = 1 nmol/l). Photo-crosslinking of the drug to the membranes resulted in labelling of two proteins with apparent molecular weights of 170 and 140 kDa. The same analyses of insulinoma subcellular fractions showed that the majority (>90%) of binding proteins were localized to intracellular membranes with only minor levels (<10%) on plasma membranes. The 170 kDa sulphonylurea binding protein was present in both plasma and granule membrane fractions whereas the 140 kDa form was not present in the plasma membrane fraction. The differences in the molecular forms and subcellular distribution of the receptor are consistent with sulphonylureas having multiple sites of action in the pancreatic beta cell.

Key words

Non-insulin-dependent diabetes mellitus insulin sulphonylurea receptors islets glibenclamide secretory granule 

Abbreviations

NEDH rats

New England Deaconess Hospital rats

DMEM

Dulbecco's modified Eagle's medium

PMSF

phenylmethylsulphonyl fluoride

ER

endoplasmic reticulum

References

  1. 1.
    Ashcroft SJH, Ashcroft FM (1992) The sulphonylurea receptor. Biochim Biophys Acta 1175: 45–59CrossRefPubMedGoogle Scholar
  2. 2.
    Geisen K, Okomonopoulos HR, Punter J, Weyer R, Summ H-D (1985) Inhibition of 3H-glibenclamide binding to sulphonylurea receptors by oral antidiabetics. Drug Res 35: 707–712Google Scholar
  3. 3.
    Gaines KL, Hamilton S, Boyd AE (1988) Characterisation of the sulphonylurea receptor on Β-cell membranes. J Biol Chem 263: 2589–2592PubMedGoogle Scholar
  4. 4.
    Panten U, Burgfeld J, Goerke F, Rennicke M, Schwanstecher M, Wallasch A, Zunkler BJ, Lenzen S (1989) Control of insulin secretion by sulphonylureas, meglitinide and diazoxide in relation to their binding to the sulphonylurea receptor in pancreatic islets. Biochem Pharmacol 38: 1217–1229CrossRefPubMedGoogle Scholar
  5. 5.
    Kramer W, Oekonomopulos R, Punter J, Summ HD (1988) Direct photoaffinity labeling of the putative sulphonylurea receptor in rat Β cell membranes by [3H]-glibenclamide. FEBS Lett. 229: 335–359CrossRefGoogle Scholar
  6. 6.
    Aguilar-Bryan L, Nelson DA, Vu QA, Humphrey MB, Boyd AE (1990) Photoaffinity labeling and partial purification of the Β cell sulfonylurea receptor using a novel, biologically active glyburide analog. J Biol Chem 265: (14) 8218–8224PubMedGoogle Scholar
  7. 7.
    Nelson DA, Aguilar-Bryan L, Bryan J (1992) Specific photolabeling of Β-cell membrane proteins with an 125I-labeled glyburide analogue. J Biol Chem 267: 14928–14933PubMedGoogle Scholar
  8. 8.
    Skeer JM, Dégano P, Coles B, Potier M, Ashcroft FM, Ashcroft SJH (1994) Determination of the molecular mass of the native Β-cell sulfonylurea receptor FEBS Lett 338: 98–102CrossRefPubMedGoogle Scholar
  9. 9.
    Lee K, Ozanne SE, Hales CN, Ashford MLJ (1994) Mg2+-dependent inhibition of KATP by sulphonylureas in CRI-G1 insulin-secreting cells. Br J Pharmacol 111: 632–640PubMedGoogle Scholar
  10. 10.
    Khan KN, Hales CN, Ozanne SE, Adogu AA, Ashford MLJ (1993) Dissociation of KATP channel and sulphonylurea receptor in the rat clonal insulin-secreting cell line, CRI-D11. Proc Roy Soc Ser B 253: 225–231Google Scholar
  11. 11.
    Shibier O, Flatt PR, Effendic S, Berggren P-O (1991) Intracellular action of sulphonylureas in the stimulation of insulin release. Diabetologia 34: [Suppl 2] A29 (Abstract)Google Scholar
  12. 12.
    Ammala C, Bokvist K, Eliasson L, Lindstrom P, Rorsman P (1993) Tolbutamide stimulates exocytosis by direct interaction with the secretory machinery in Β-cells. Diabetologia 36: [Suppl 1] A60 AbstractGoogle Scholar
  13. 13.
    Carpentier J-L, Sawano F, Ravazzola M, Malaisse WJ (1986) Internalization of 3H-glibenclamide in pancreatic islet cells. Diabetologia 29: 259–261PubMedGoogle Scholar
  14. 14.
    Hutton JC, Penn EJ, Jackson PJ, Hales CN (1981) Isolation and characterisation of calmodulin from an insulin secreting tumour. Biochem J 193: 875–885PubMedGoogle Scholar
  15. 15.
    Hutton JC, Davidson HW, Grimaldi KA, Peshavaria M (1987) Biosynthesis of betagranin in pancreatic beta cells: identification of a chromogranin A-like precursor and its parallel processing with proinsulin Biochem J 244: 449–456PubMedGoogle Scholar
  16. 16.
    Carrington CA, Rubery ED, Pearson EC, Hales CN (1986) Five new insulin-producing cell lines with differing secretory properties. J Endocrinology 109: 193–200Google Scholar
  17. 17.
    Guest PC, Rhodes CJ, Hutton JC (1989) Regulation of the biosynthesis of insulin-secretory-granule proteins. Biochem J 257: 431–437PubMedGoogle Scholar
  18. 18.
    Hutton JC, Bailyes EM, Rhodes CJ, Guest PC (1990) Regulation of the biosynthesis and processing of polypeptide hormones. In: JC Hutton, K Siddle (eds) Peptide hormone secretion, pp 309–336Google Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72: 248–254CrossRefPubMedGoogle Scholar
  20. 20.
    Hales CN, Randle PJ (1963) Immunoassay of insulin with insulin-antibody precipitate. Biochem J 88: 137–146PubMedGoogle Scholar
  21. 21.
    Cooperstein SJ, Lazarow A (1951) A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem 189: 665–670PubMedGoogle Scholar
  22. 22.
    Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) An electron transport system associated with the outer membrane of liver mitochondria. J Cell Biol 32: 415–438CrossRefPubMedGoogle Scholar
  23. 23.
    Bowers GN Jr, McComb RB (1975) Measurement of total alkaline phosphatase activity in human serum. Clin Chem 21: 1988–1995PubMedGoogle Scholar
  24. 24.
    Barrett AJ, Heath MF (1977) Lysozomes: a laboratory handbook. In: Dingle JT (ed) North Holland Publishing Co., AmsterdamGoogle Scholar
  25. 25.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the bacteriophage T4 Nature 227: 680–685PubMedGoogle Scholar
  26. 26.
    Nelson DA, Aguilar-Bryan L, Wechsler SW, Bryan J (1993) The high affinity HIT cell sulfonylurea receptor: identification, purification and subunit structure. International Symposium on KATP channels and sulfonylurea receptors, Texas (Abstract)Google Scholar
  27. 27.
    Bryan J, Aguilar-Bryan L, Nelson D (1993) Cloning of a sulfonylurea receptor (ATP-sensitive K+ channel?) from rodent α- and Β-cells. International Symposium on KATP channels and sulfonylurea receptors, Texas (Abstract)Google Scholar
  28. 28.
    Lee K, Ozanne SE, Rowe I, Hales CN, Ashford MLJ (1994) The effects of trypsin on ATP-sensitive potassium channel properties and sulfonylurea receptors in the CRI-G1 insulin-secreting cell line. Molecular Pharmacol 45: 176–185Google Scholar
  29. 29.
    Bernardi H, Fosset M, Lazdunski M (1988) Characterization, purification and affinity labelling of the brain [3H] glibenclamide binding protein, a putative neuronal ATP-regulated K+ channel. Proc Natl Acad Sci USA 85: 9816–9820PubMedGoogle Scholar
  30. 30.
    Sturgess NC, Ashford MLJ, Cook DL, Hales CN (1985) The sulphonylurea receptor may be an ATP-sensitive K+ channel. Lancet ii: 474–475CrossRefGoogle Scholar
  31. 31.
    Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD (1992) Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem 267: 26062–26069PubMedGoogle Scholar
  32. 32.
    Thévenod F, Chathadi KV, Jiang B, Hopfer U (1992) ATP-sensitive K+ conductance in pancreatic zymogen granules: block by glyburide and activation by diazoxide. J Mem Biol 129: 253–266Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • S. E. Ozanne
    • 1
  • P. C. Guest
    • 1
  • J. C. Hutton
    • 1
  • C. N. Hales
    • 1
  1. 1.Department of Clinical BiochemistryUniversity of Cambridge, Addenbrooke's HospitalCambridgeUK

Personalised recommendations