Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation

  • 928 Accesses

  • 1199 Citations

Abstract

We study for g=g[(N+1) the structure and representations of the algebra Ŭ(g), a q-analogue of the universal enveloping algebra U(g). Applying the result, we construct trigonometric solutions of the Yang-Baxter equation associated with higher representations of g.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Kulish P. P. and Sklyanin E. K., Zapiski nauch. semin. LOMI 95, 129 (1980); English translation J. Soviet Math. 19, 1596 (1982).

  2. 2.

    Belavin A. A. and Drinfel'd V. G., Funct. Anal. Appl. 17, 220 (1983).

  3. 3.

    Kulish P. P. and Sklyanin E. K., in Integrable Quantum Field Theories, Lecture Notes in Physics 151, Springer-Verlag, New York, 1982, p. 61.

  4. 4.

    Sklyanin E. K., Funct. Anal. Appl. 16, 263 (1982).

  5. 5.

    Kulish P. P. and Reshetikhin N. Yu., Zapiski nauch. semin. LOMI, 101, 112 (1980); English translation J. Soviet Math. 23, 2435 (1983).

  6. 6.

    Drinfel'd V. G., Doklady Akad. Nauk SSSR 283, 1060 (1985).

  7. 7.

    Yang C. N., Phys. Rev. Lett. 19, 1312 (1967).

  8. 8.

    Jimbo M., Lett. Math. Phys. 10, 63 (1985).

  9. 9.

    Bourbaki N., Groupes et algèbres de Lie, Chap. 4, Exerc. 22–24, Hermann, Paris, 1968.

  10. 10.

    Kulish P. P., Reshetikhin N. Yu., and Sklyanin E. K., Lett. Math. Phys. 5, 393 (1981).

  11. 11.

    Jimbo, M., RIMS preprint 506, Kyoto University (1985), to appear in Commun. Math. Phys.

  12. 12.

    Babelon O., Nucl. Phys. B230 [FS10], 241 (1984).

  13. 13.

    Babelon O., de Vega H. J., and Viallet C. M., Nucl. Phys. B190, 542 (1981). Cherednik, I. V., Theor. Math. Phys. 43, 356 (1980); Chudnovsky, D. V. and Chudnovsky, G. V., Phys. Lett. 79A, 36 (1980); Schultz, C. L., Phys. Rev. Lett. 46, 629 (1981).

  14. 14.

    Weyl H., Classical Groups, Princeton University Press, Princeton, 1953.

  15. 15.

    Curtis C. W., Iwahori N., and Kilmoyer R., I.H.E.S. Publ. Math. 40, 81 (1972).

  16. 16.

    Gyoja, A., ‘A q-Analogue of Young Symmetrizer’, preprint, Osaka University (1985).

  17. 17.

    Baxter R. J., Exactly Solved Models, Academic Press, London, 1982.

  18. 18.

    Jones, V. F. R., ‘Braid Groups, Hecke Algebras and Type II1 Factors’, to appear in Japan-U.S. Conf. Proc. 1983.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jimbo, M. A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation. Lett Math Phys 11, 247–252 (1986). https://doi.org/10.1007/BF00400222

Download citation

Keywords

  • Statistical Physic
  • Group Theory
  • High Representation
  • Trigonometric Solution