Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Conformal nonabelian gauge theory

  • 46 Accesses

  • 4 Citations

Abstract

A conformal nonabelian gauge theory with a five-component gauge potential is considered. In this theory the conformal-invariant two-point function has a nonzero transverse part and a Lagrangian with a conformal-invariant gauge-fixing term is found. The corresponding local effective Lagrangian, where the dimensionless Faddeev-Popov ‘ghost’ field is included, obeys a global supersymmetry of the Becchi-Rouet-Stora type. In the gauge-invariant sector it is shown that this theory is equivalent to the ordinary Yang-Mills theory.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Mack G. and Salam A., Ann. Phys. 53, 174 (1969).

  2. 2.

    Dobrev, V. K., Mack, G., Petkova, V. B., Petrova, S. G., and Todorov, I. T., Lecture Notes in Physics 68, Springer, 1977.

  3. 3.

    Binegar B., Fronsdal C., and Heidenreich W., J. Math. Phys. 24, 2827 (1983).

  4. 4.

    Zaikov, R. P., Preprint JINR, E2-83-28, Dubna, 1983; TMF 65, 70 (1985).

  5. 5.

    Furlan P., Petkova V. B., Sotkov G. M., and Todorov I. T., Rev. Nuovo Cim. 8, 1 (1985).

  6. 6.

    Bayen, F., Flato, M., and Fronsdal. C., Preprint UCLA/84/TEP/18, Los Angeles, 1984.

  7. 7.

    Petkova V. B., Sotkov G. M., and Todorov I. T., Commun. Math. Phys. 97, 227 (1985).

  8. 8.

    Todorov, I. T., Preprint ISAS, 4/85/EP, Trieste, 1985.

  9. 9.

    Bayen F. and Flato M., J. Math. Phys. 17, 1113 (1976).

  10. 10.

    Sotkov G. M. and Stoyanov D. Tz., J. Phys. A13, 2807; A16, 2817 (1983).

  11. 11.

    Frakin E. S., Kozhevnikov A. A., and Palchik M. Ya., Commun. Math. Phys. 91, 521 (1983).

  12. 12.

    Palchik M. Ya., J. Phys. A16, 1583 (1983).

  13. 13.

    Palchik, M. Ya., Preprint IAE, 219, Novosibirsk, 1983.

  14. 14.

    Zaikov, R. P., Preprint JINR, E2-83-44, Dubna, 1983.

  15. 15.

    Zaikov, R. P., ‘Ward-Takahashi identities in conformal QED’, Preprint INRNE, Sofia, 1985.

  16. 16.

    Becchi C., Rouet A., and Stora R., Ann. Phys. 98, 287 (1976).

  17. 17.

    Kugo O. and Ojima I., Suppl. Prog. Theor. Phys. 66, 1 (1979).

  18. 18.

    Ferrary R., Nuovo Cim. 19A, 204, (1976).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zaikov, R.P. Conformal nonabelian gauge theory. Lett Math Phys 11, 189–197 (1986). https://doi.org/10.1007/BF00400216

Download citation

Keywords

  • Statistical Physic
  • Gauge Theory
  • Ghost
  • Group Theory
  • Gauge Potential