Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Selective proteinuria in diabetic nephropathy in the rat is associated with a relative decrease in glomerular basement membrane heparan sulphate

Summary

In the present study we investigated whether glomerular hyperfiltration and albuminuria in streptozotocin-induced diabetic nephropathy in male Wistar-Münich rats are associated with changes in the heparan sulphate content of the glomerular basement membrane. Rats with a diabetes mellitus duration of 8 months, treated with low doses of insulin, showed a significant increase in glomerular filtration rate (p<0.01) and effective renal plasma flow (p<0.05), without alterations in filtration fraction or mean arterial blood pressure. Diabetic rats developed progressive albuminuria (at 7 months, diabetic rats (D): 42±13 vs control rats (C): 0.5±0.2 mg/ 24 h, p<0.002) and a decrease of the selectivity index (clearance IgG/clearance albumin) of the proteinuria (at 7 months, D: 0.20±0.04 vs C: 0.39±0.17, p<0.05), suggesting loss of glomerular basement membrane charge. Light- and electron microscopy demonstrated a moderate increase of mesangial matrix and thickening of the glomerular basement membrane in the diabetic rats. Immunohistochemically an increase of laminin, collagen III and IV staining was observed in the mesangium and in the glomerular basement membrane, without alterations in glomerular basement membrane staining of heparan sulphate proteoglycan core protein or heparan sulphate. Giomerular basement membrane heparan sulphate content, quantitated in individual glomerular extracts by a new inhibition ELISA using a specific anti-glomerular basement membrane heparan sulphate monoclonal antibody (JM403), was not altered (median (range) D: 314 (152–941) vs C: 262 (244–467) ng heparan sulphate/mg glomerulus). However, the amount of glomerular 4-hydroxyproline, as a measure for collagen content, was significantly increased (D: 1665 (712–2014) vs C: 672 (515–1208) ng/mg glomerulus, p<0.01). Consequently, a significant decrease of the heparan sulphate/4-hydroxyproline ratio (D: 0.21 (0.14–1.16) vs C: 0.39 (0.30–0.47), p<0.05) was found. In summary, we demonstrate that in streptozotocin-diabetic rats glomerular hyperfiltration and a progressive, selective proteinuria are associated with a relative decrease of glomerular basement membrane heparan sulphate. Functionally, a diminished heparan sulphate-associated charge density within the glomerular basement membrane might explain the selective proteinuria in the diabetic rats.

Abbreviations

BW:

Body weight

ERPF:

effective renal plasma flow

GAG:

glycosaminoglycan

GBM:

glomerular basement membrane

GFR:

glomerular filtration rate

HS:

heparan sulphate

HSPG:

heparan sulphate proteoglycan

IDDM:

insulin-dependent diabetes mellitus

STZ:

streptozotocin

References

  1. 1.

    Kanwar YS, Liu ZZ, Kashihara N, Wallner EI (1991) Current status of the structural and functional basis of glomerular filtration and proteinuria. Semin Nephrol 11: 390–413

  2. 2.

    Farquhar MG (1991) The glomerular basement membrane. A selective macromolecular filter. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum Press, New York pp 365–418

  3. 3.

    Rosenzweig LJ, Kanwar YS (1982) Removal of sulfated (heparan sulfate) or nonsulfated (hyaluronic acid) glycosaminoglycans results in increased permeability of the glomerular basement membrane to 125-I-bovine serum albumin. Lab Invest 47: 177–184

  4. 4.

    Vehaskari VM, Root ER, Germuth FG, Robson AM (1982) Glomerular charge and urinary protein excretion. Effects of systemic and intrarenal polycation infusion in the rat. Kidney Int 22: 127–135

  5. 5.

    Hunsicker LG, Shearer TP, Shaffer SJ (1981) Acute reversible proteinuria induced by infusion of the polycation hexadimethrine. Kidney Int 20: 7–17

  6. 6.

    Assel E, Neumann K-H, Schurek H-J, Sonnenburg C, Stolte H (1984) Glomerular albumin leakage and morphology after neutralization of polyanions; I. Albumin clearance and sieving coefficient in the isolated perfused rat kidney. Renal Physiol (Basel) 7: 357–364

  7. 7.

    Sonnenburg-Hatzopoulos C, Assel E, Schurek HJ, Stolte H (1984) Glomerular albumin leakage and morphology after neutralization of polyanions; II. Discrepancy of protamine induced albuminuria and fine structure of the glomerular filtration barrier. J Submicrosc Cytol 16: 741–751

  8. 8.

    Born van den J, Heuvel van den LPWJ, Bakker MAH, Veerkamp JH, Assmann KJM, Berden JHM (1992) A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int 41: 115–123

  9. 9.

    Mogensen CE (1984) Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Eng J Med 310: 356–360

  10. 10.

    Viberti GC, Hill RD, Jarrett RJ, Argyropoulos A, Mahmud U, Keen H (1982) Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet I: 1430–1432

  11. 11.

    Deckert T, Feldt-Rasmussen B, Djurup R, Deckert M (1988) Glomerular size and charge selectivity in insulin-dependent diabetes mellitus. Kidney Int 33: 100–106

  12. 12.

    Deckert T, Kofoed-Enevoldsen A, Vidal P, Norgaard K, Andreasen HB, Feldt-Rasmussen B (1993) Size- and charge selectivity of glomerular filtration in type 1 (insulin-dependent) diabetic patients with and without albuminuria. Diabetologia 36: 244–251

  13. 13.

    Bangstad H-J, Kofoed-Enevoldsen A, Dahl-Jorgensen K, Hanssen KF (1992) Glomerular charge selectivity and the influence of improved blood glucose control in type 1 (insulin-dependent) diabetic patients with microalbuminuria. Diabetologia 35: 1165–1169

  14. 14.

    Kverneland A, Feldt-Rasmussen B, Vidal P et al. (1986) Evidence of changes in renal charge selectivity in patients with type 1 (insulin-dependent) diabetes mellitus. Diabetologia 29: 634–639

  15. 15.

    Parthasarathy N, Spiro RG (1982) Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes 31: 738–741

  16. 16.

    Shimomura H, Spiro RG (1987) Studies on macromolecular components of human glomerular basement membrane and alterations in diabetes; decreased levels of heparan sulfate proteoglycan and laminin. Diabetes 36: 374–381

  17. 17.

    Makino H, Yamasaki Y, Haramoto T et al. (1993) Ultrastructural changes of extracellular matrices in diabetic nephropathy revealed by high resolution scanning and immunoelectron microscopy. Lab Invest 68: 45–55

  18. 18.

    Vernier RL, Steffes MW, Sisson-Ross S, Mauer M (1992) Heparan sulfate proteoglycan in the glomerular basement membrane in type I diabetes mellitus. Kidney Int 41: 1070–1080

  19. 19.

    Born van den J, Heuvel van den LPWJ, Bakker MAH et al. (1993) Distribution of GBM heparan sulfate proteoglycan core protein and side chains in human glomerular diseases. Kidney Int 43: 454–463

  20. 20.

    Tamsma JT, Born van den J, Bruijn JA et al. (1994) Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular basement membrane. Diabetologia 37: 313–320

  21. 21.

    Nerlich A, Schleicher E (1991) Immunohistochemical localization of extracellular matrix components in human diabetic glomerular lesions. Am J Pathol 139: 889–899

  22. 22.

    Makino H, Ikeda S, Haramoto T, Ota Z (1992) Heparan sulfate proteoglycans are lost in patients with diabetic nephropathy. Nephron 61: 415–421

  23. 23.

    Saraswathi S, Vasan NS (1983) Alterations in the rat renal glycosaminoglycans in streptozotocin-induced diabetes. Biochim Biophys Acta 755: 237–243

  24. 24.

    Wu V-Y, Wilson B, Cohen MP (1987) Disturbances in glomerular basement membrane glycosaminoglycans in experimental diabetes. Diabetes 369: 679–683

  25. 25.

    Reddi AS (1991) Prevention of albuminuria by captopril in diabetic rats. Gen Pharmac 22: 323–328

  26. 26.

    Reddi AS, Ramamurthi R, Miller M, Dhuper S, Lasker N (1991) Enalapril improves albuminuria by preventing glomerular loss of heparan sulfate in diabetic rats. Biochem Med Metab Biol 45: 119–131

  27. 27.

    Templeton DM (1989) Retention of glomerular basement membrane-proteoglycans accompanying loss of anionic site staining in experimental diabetes. Lab Invest 61: 202–211

  28. 28.

    Cohen MP, Klepser H, Wu V-Y (1988) Undersulfation of glomerular basement membrane heparan sulfate in experimental diabetes and lack of correction with aldolase reductase inhibition. Diabetes 37: 1324–1327

  29. 29.

    Cohen MG, Surma ML (1984) Effect of diabetes on in vivo metabolism of [35S]-labeled glomerular basement membrane. Diabetes 33: 8–12

  30. 30.

    Klein DJ, Brown DM, Oegema TR (1986) Glomerular proteoglycans in diabetes. Partial structural characterization and metabolism of de novo synthesized heparan-35S04 and dermatan-35S04 proteoglycans in streptozotocin-induced diabetic rats. Diabetes 35: 1130–1142

  31. 31.

    Warren J, Mason RM (1992) Steady state measurement of glomerular proteoglycan synthesis in streptozotocin-induced diabetes. Biochem Soc Trans 20: 97S

  32. 32.

    Kanwar YS, Rosenzweig LJ, Linker A, Jakubowski ML (1983) Decreased de novo synthesis of glomerular proteoglycans in diabetes: biochemical and autoradiographic evidence. Proc Natl Acad Sci USA 80: 2272–2275

  33. 33.

    Cohen MP, Surma ML (1981) 35S-sulfate incorporation into glomerular basement membrane glycosaminoglycans is decreased in experimental diabetes. J Lab Clin Med 98: 715–722

  34. 34.

    Beavan LA, Davies M, Mason RM (1988) Renal glomerular proteoglycans; an investigation of their synthesis in vivo using a technique for fixation in situ. Biochem J 251: 411–418

  35. 35.

    O'Donnell MP, Kasiske BL, Keane WF (1988) Glomerular hemodynamic and structural alterations in experimental diabetes mellitus. FASEB J 2: 2339

  36. 36.

    Zatz R, Meyer TW, Rennke HG, Brenner BM (1985) Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci USA 82: 5963–5967

  37. 37.

    Zatz R, Dunn BR, Meyer TW, Anderson S, Rennke HG, Brenner BM (1986) Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 77: 1925–1930

  38. 38.

    Anderson S, Rennke HG, Garcia DL, Brenner BM, Riley SL, Sandstrom DJ (1989) Short and long term effects of antihypertensive therapy in the diabetic rat. Kidney Int 36: 526–536

  39. 39.

    Laurell CB (1966) Quantitative estimation of proteins of electrophoresis in agarose gel containing antibodies. Anal Biochem 15: 45–52

  40. 40.

    Provoost AP, Keijzer de MH, Wolff ED, Molenaar JC (1983) Development of renal function in the rat. The measurements of GFR and ERPF and correlation to body and kidney weight. Renal Physiol 6: 1–9

  41. 41.

    Harvey JN, Jaffa AA, Loadholt CB, Mayfield RK (1988) Measurement of glomerular filtration rate and renal plasma flow in the diabetic rat by the single-injection isotopic technique: effects of altered distribution volumes of 51Cr-EDTA and 125I-hippuran. Diab Res 9: 67–72

  42. 42.

    Lambalgen van AA, Kraats van AA, Bos van den GC et al. (1991) Renal function and metabolism during endotoxemia in rats: role of hypoperfusion. Circ Shock 35: 164–173

  43. 43.

    Passing H, Bablok W (1983) A new biometrical procedure for testing the equality of measurements from two different analytical methods. J Clin Chem Clin Biochem 21: 709–720

  44. 44.

    Heuvel van den LPWJ, Born van den J, Velden van de TJAM et al. (1989) Isolation and partial characterization of heparan sulfate proteoglycan from the human glomerular basement membrane. Biochem J 264: 457–465

  45. 45.

    Meezan E, Hjelle JT, Brendel K, Carlson EC (1975) A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci 17: 1721–1732

  46. 46.

    Berg RA (1982) Determination of 3- and 4-hydroxyproline. Meth Enzym 82: 372–398

  47. 47.

    Hostetter TH, Troy JL, Brenner BM (1981) Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int 19: 410–415

  48. 48.

    Allen TJ, Cooper ME, O'Brien RC, Bach LA, Jackson B, Jerums G (1990) Glomerular filtration rate in streptozotocin-induced diabetic rats. Role of exchangeable sodium, vasoactive hormones, and insulin therapy. Diabetes 39: 1182–1190

  49. 49.

    Fukui M, Nakamura T, Ebihara I, Shirato I, Tomino Y, Koide H (1992) ECM gene expression and its modulation by insulin in diabetic rats. Diabetes 41: 1520–1527

  50. 50.

    Ledbetter S, Copeland EJ, Noonan D, Vogeli G, Hassell JR (1990) Altered steady-state mRNA levels of basement membrane proteins in diabetic mouse kidneys and thromboxane synthase inhibition. Diabetes 39: 196–203

  51. 51.

    Kopp JB, Bruggeman LA, Klotman PE (1993) Extracellular matrix gene expression in experimental glomerulonephritis. Curr Opin Nephrol Hypertens 2: 609–617

  52. 52.

    Border WA, Noble NA (1993) Cytokines in kidney disease: the role of transforming growth factor-B. Am J Kidney Dis 22: 105–113

  53. 53.

    Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA (1993) Expression of transforming growth factor-B is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci USA 90: 1814–1818

  54. 54.

    Nakamura T, Miller D, Ruoslahti E, Border WA (1992) Production of extracellular matrix by glomerular epithelial cells is regulated by transforming growth factor-B 1. Kidney Int 41: 1213–1221

  55. 55.

    Veerkamp JH (1987) Age-related structural changes in glomerular and tubular basement membranes. In: Price RG, Hudson BG (eds) Renal basement membranes in health and disease. Academic Press, London pp 135–146

  56. 56.

    Lindahl U, Kusche M, Lidholt K, Oscarsson L-G (1989) Biosynthesis of heparin and heparan sulfate. Ann NY Acad Sci 556: 36–50

  57. 57.

    Unger E, Pettersson I, Eriksson UJ, Lindahl U, Kjellén L (1991) Decreased activity of the heparan sulfate-modifying enzyme glucosaminyl N-deacetylase in hepatocytes from streptozotocin-diabetic rats. J Biol Chem 266-8671–8674

  58. 58.

    Kofoed-Enevoldsen A (1992) Inhibition of glomerular glucosaminyl N-deacetylase in diabetic rats. Kidney Int 41: 763–767

  59. 59.

    Kofoed-Enevoldsen A, Noonan D, Deckert T (1993) Diabetes mellitus induced inhibition of glucosaminyl N-deacetylase: effect of short-term blood glucose control in diabetic rats. Diabetologia 36: 310–315

  60. 60.

    Levy P, Picard J, Bruel A (1984) Evidence for diabetes-induced alterations in the sulfation of heparan sulfate intestinal epithelial cells. Life Sci 35: 2613–2620

  61. 61.

    Kjellén L, Bielefeld D, Höök M (1983) Reduced sulfation of liver heparan sulfate in experimentally diabetic rats. Diabetes 32: 337–342

  62. 62.

    Silbiger S, Crowley S, Shan Z, Brownlee M, Santriano J, Schlondorff D (1993) Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int 43: 853–864

  63. 63.

    Daniels BS, Hostetter TH, Kren SM (1991) Functional and structural alterations of the glomerular permeability barrier in experimental galactosemia. Kidney Int 39: 1104–1111

  64. 64.

    Daniels BS, Hauser EB (1992) Glycation of albumin, not glomerular basement membrane, alters permeability in an in vitro model. Diabetes 41: 1415–1421

  65. 65.

    Garlick RL, Bunn HF, Spiro RG (1988) Nonenzymatic glycation of basement membranes from human glomeruli and bovine sources. Diabetes 37: 1144–1150

  66. 66.

    Charonis AS, Tsilibary EC (1992) Structural and functional changes of laminin and type IV collagen after nonenzymatic glycation. Diabetes 41: 49–51

  67. 67.

    Tarsio JF, Reger LA, Furcht LT (1988) Molecular mechanisms in basement membrane complications of diabetes. Alterations in heparin, laminin, and type IV collagen association. Diabetes 37: 532–539

  68. 68.

    Tarsio JF, Wigness B, Rhode TD, Rupp WM, Buchwald H, Furcht LT (1985) Nonenzymatic glycation of fibronectin and alterations in the molecular association of cell matrix and basement membrane components in diabetes mellitus. Diabetes 34: 477–484

Download references

Author information

Correspondence to Dr. J. van den Born.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van den Born, J., van Kraats, A.A., Bakker, M.A.H. et al. Selective proteinuria in diabetic nephropathy in the rat is associated with a relative decrease in glomerular basement membrane heparan sulphate. Diabetologia 38, 161–172 (1995). https://doi.org/10.1007/BF00400090

Download citation

Key words

  • Glomerular basement membrane
  • heparan sulphate
  • collagen
  • glomerular filtration rate
  • albuminuria