Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Finite-time deviations from exponential decay of dipole-moment expectation values in the case of spontaneous emission

  • 41 Accesses

  • 1 Citations

Abstract

For the first time, to the authors' knowledge, a mathematically rigorous method is used for obtaining finite-time deviations from the exponential decay of the dipole-moment expectation values in the case of spontaneous Lyman-α transition in a two-level hydrogenic atom. In calculations counterrotating terms, yielding the frequency shift (Lamb shift) within the scope of the two-level model, are taken into account.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Seke J. and Herfort W., Lett. Math. Phys. 18, 185–191 (1989).

  2. 2.

    Weisskopf V. F. and Wigner E. P., Z. Phys. 63, 54 (1930); 65, 18 (1930).

  3. 3.

    Moses H. E., Phys. Rev. A 8, 1710 (1973).

  4. 4.

    Seke J., Z. Phys. B 57, 71 (1984); Seke, J., Nuovo Cim. D (in press).

  5. 5.

    Abramowitz M. and Stegun I. A., Handbook of Mathematical Functions, National Bureau of Standards, Washington, 1970, p. 1020.

  6. 6.

    Markushevich, A. I., Theory of Functions of a Complex Variable Chelsea, Vol. 2, New York, 1985.

  7. 7.

    Henrici P., Applied and Computational Complex Analysis, vol. 1, Wiley, New York, 1974.

  8. 8.

    Allen L. and Eberly J. H., Optical Resonance and Two-Level, Atoms Wiley, New York, 1975.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seke, J., Herfort, W. Finite-time deviations from exponential decay of dipole-moment expectation values in the case of spontaneous emission. Lett Math Phys 18, 247–253 (1989). https://doi.org/10.1007/BF00399974

Download citation

AMS subject classification (1980)

  • 81K05