Letters in Mathematical Physics

, Volume 1, Issue 6, pp 535–544 | Cite as

Deformations of representations

  • Georges Pinczon


A connection between deformation of Lie group representations and deformations of associated Lie algebra representations is established. Applications are given to the theory of analytic continuation of K-finite quasi-simple representations of semi-simple Lie groups. A construction process of all TCI representations of SL(2,R) is obtained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourbaki, N., Eléments de Mathématiques, Livre VI, chap. 8, Hermann, Paris.Google Scholar
  2. 2.
    Dieudonné, J., Eléments d'Analyse, t. 2, Gauthier Villars, Paris.Google Scholar
  3. 3.
    Dunford, N. and Schwartz, J.T., Linear Operators I, Interscience Publ., N.Y.Google Scholar
  4. 4.
    Hermann R., ‘Analytic Continuation of Group Representations IV’, Comm. Math. Phys. 5, No. 2, 113 (1967).Google Scholar
  5. 5.
    Hille, E. and Phillips, R.S., ‘Functional Analysis and Semi-Groups’, Am. Math. Soc. Coll. Publ. XXXI.Google Scholar
  6. 6.
    Kunze R.A. and Stein E.M., ‘Uniformly Bounded Representations IV’, Adv. Math. 11, 1 (1973).Google Scholar
  7. 7.
    Nijenhuis A. and Richardson R.W. Jr., ‘Cohomology and Deformations in Graded Lie Algebras’, Bull. Am. Math. Soc. 72, 1 (1966).Google Scholar
  8. 8.
    Pinczon, G. and Simon, J., ‘Extensions of Representations and Cohomology’, preprint, Département de mathématiques, Université de Dijon.Google Scholar
  9. 9.
    Poulsen N.S., ‘On C Vectors and Intertwining Bilinear Forms for Representations of Lie Groups’, J. Funct. Anal. 9, 87 (1972).Google Scholar
  10. 10.
    Stein E.M., ‘Analytic Continuation of Group Representations’, Adv. Math. 4, 172 (1970).Google Scholar
  11. 11.
    Warner, G., Harmonic Analysis on Semi-simple Lie Groups I, Springer Verlag.Google Scholar

Copyright information

© D. Reidel Publishing Company 1977

Authors and Affiliations

  • Georges Pinczon
    • 1
  1. 1.Laboratoire de Physique MathématiqueFaculté des Sciences MirandeDijonFrance

Personalised recommendations