Advertisement

Letters in Mathematical Physics

, Volume 1, Issue 6, pp 521–530 | Cite as

Quantum mechanics as a deformation of classical mechanics

  • F. Bayen
  • M. Flato
  • C. Fronsdal
  • A. Lichnerowicz
  • D. Sternheimer
Article

Abstract

Mathematical properties of deformations of the Poisson Lie algebra and of the associative algebra of functions on a symplectic manifold are given. The suggestion to develop quantum mechanics in terms of these deformations is confronted with the mathematical structure of the latter. As examples, spectral properties of the harmonic oscillator and of the hydrogen atom are derived within the new formulation. Further mathematical generalizations and physical applications are proposed.

Keywords

Hydrogen Manifold Statistical Physic Hydrogen Atom Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wigner E.P., Phys. Rev. 40, 749 (1932).CrossRefGoogle Scholar
  2. 2.
    Weyl, H., The Theory of Groups and Quantum Mechanics, Dover, 1931.Google Scholar
  3. 3.
    Agarwal E.S. and Wolf E., Phys. Rev. D2, 2161 (1970).Google Scholar
  4. 4.
    Kuang Chi Liu, J. Math. Phys. 17, 859 (1976).Google Scholar
  5. 5.
    Moyal J.E., Proc. Cambridge Phil. Soc. 45, 99 (1949).Google Scholar
  6. 6.
    Flato M., Lichnerowicz A., and Sternheimer D., C.R. Acad. Sci. Paris A279, 877 (1974); Compositio Mathematica 31, 47 (1975); J. Math. Phys. 17, 1745 (1976).Google Scholar
  7. 7.
    Vey J., Comment. Math. Helvet. 50, 421 (1975).Google Scholar
  8. 8.
    Flato M., Lichnerowicz A., and Sternheimer D., C.R. Acad. Sci. Paris A283, 19 (1976).Google Scholar
  9. 9.
    Gerstenhaber M., Ann. Math. 79, 59 (1964).Google Scholar
  10. 10.
    Souriau J.M., Structure des Systèmes Dynamiques, Dunod, Paris, 1970.Google Scholar
  11. 11.
    Kostant, B., in Lecture Notes in Mathematics, No. 170, Springer, 1970, pp. 87–208; M. Vergne, Bull. Math. Soc. Fr. 100, 301 (1972).Google Scholar
  12. 12.
    Dirac P.A.M., Lectures on Quantum Mechanics, Belfer Graduate School of Sciences Monograph Series No. 2 (Yeshiva University, New York, 1964).Google Scholar
  13. 13.
    Lichnerowicz A., C.R. Acad. Sci. Paris A280, 523 (1974).Google Scholar
  14. 14.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., to be published.Google Scholar
  15. 15.
    Avez A. and Lichnerowicz A., C.R. Acad. Sci. Paris A275, 113 (1972).Google Scholar

Copyright information

© D. Reidel Publishing Company 1977

Authors and Affiliations

  • F. Bayen
    • 1
  • M. Flato
    • 2
  • C. Fronsdal
    • 2
  • A. Lichnerowicz
    • 3
  • D. Sternheimer
    • 4
  1. 1.Département de MathématiquesUniversité de Paris 6Paris Cedex 05France
  2. 2.University of CaliforniaLos AngelesUSA
  3. 3.Université de DijonDijonFrance
  4. 4.Collège de FranceParis Cedex 05France

Personalised recommendations