Marine Biology

, Volume 103, Issue 4, pp 503–511 | Cite as

Growth and exuvial loss during larval and early juvenile development of the hermit crab Pagurus bernhardus reared in the laboratory

  • K. Anger


Larvae of the hermit crab Pagurus bernhardus L. were obtained from origenerous females collected in 1986 near Helgoland (North Sea) and reared under constant conditions in the laboratory from hatching through the first juvenile instar. In regular intervals (every 1 or 2 d), changes in biomass during individual moult cycles were measured in dry weight (W), carbon (C), nitrogen (N) and hydrogen (H). Growth patterns in subsequent instars are described by regression equations. The megalopa does not eat and consequently looses biomass during its development. whereas all other instars gain biomass. Both instantaneous ineividual and instantaneous weight-specific growth rates decrease, in general, during the course of a moult cycle. As an exception, the megalopa was found to loose a constant fraction (ca 3 to 4% d-1) of its organic compounds. The C/N ratio indicates that this loss is primarily due to lipid catabolism. The term “secondary lecithotrophy” is proposed for non-feeding larval stages that develop with energy reserves accumulated by preceding feeding stages (in contrast to “primary lecithotrophy” of early stages that depend on yolk reserves from the egg). It is interpreted as an adaptation to an extremely specialized life style (here, life in a gastropod shell) requiring a particularly careful habitat selection before metamorphosis. As energetic costs of this adaptation, the megalopa loses ca one half of C and one third of N produced by the zocal instars combined. Relative elemental composition (C, N, H. as % of W) reveals a cyclic pattern with low postmoult and high premoult values during zocal development. The megalopa, in contrast, shows decreasing, and the juvenile rather constant, values. Regressions are given that describe average relations between W, C, N and H, so that conversions are possible between different measures of biomass. Exuvial losses (in μg W, C, N, H ind-1) increase in successive instars in an exponential manner. As a percentage of late premoult matter, or of the amounts produced during a given instar, exuvial losses of P. bernhardus zocae are very low as compared to other decapod larvae, but these losses increase significantly in later developmental stages. Elemental composition shows that the exuviae of successive instars contain increasing amounts of inorganic matter (ash), including inorganic C (carbonate).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Abrams, P. A. (1987a). An analysis of competitive interactions between 3 hermit crab species. Oecologia 72: 233–247Google Scholar
  2. Abrams, P. A. (1987b). Resource partitioning and competition for shells between intertidal hermit crabs on the outer coast of Washington. Oecologia 72: 248–258Google Scholar
  3. Anger, K. (1984). Gain and loss of particulate organic and inorganic matter in larval and juvenile spider crabs (Hyas araneus) during growth and exuviation. Helgoländer Meeresunters. 38: 107–122Google Scholar
  4. Anger, K. (1986). Changes of respiration and biomass of spider crab (Hyas araneus) larvae during starvation. Mar. Biol. 90: 261–269Google Scholar
  5. Anger, K., Dawirs, R. R. (1982). Elemental composition (C, N, H) and energy in growing and starving larvae of Hyas araneus (Decapoda, Majidae). Fish. Bull. U.S. 80: 419–433Google Scholar
  6. Anger, K., Harms, J., Püschel, C., Seeger, B. (1989). Physiological and biochemical changes during the larval development of a brachyuran crab reared under constant conditions in the laboratory. Helgoländer Meeresunters. 43: 225–244Google Scholar
  7. Anger, K., Jacobi, C. C. (1985). Respiration and growth of Hyas araneus L. larvae (Decapoda: Majidae) from hatching to metamorphosis. J. exp. mar. Biol. Ecol. 88: 257–270Google Scholar
  8. Anger, K., Püschel, C. (1986). Growth and exuviation of Norway lobster (Nephrops norvegicus) larvae reared in the laboratory. Ophelia 25: 157–167Google Scholar
  9. Bookhout, C. G. (1964). Salinity effects on the larval development of Pagurus bernhardus (L.) reared in the laboratory. Ophelia 1: 275–294Google Scholar
  10. Buchholz, C., Bucholz, F. (1989). Ultrastructure of the integument of a pelagic Crustacean: moult cycle related studies on the Antarctic krill Euphausia superba. Mar. Biol. 101: 355–365Google Scholar
  11. Carvacho, A. (1988). Developpement juvénile de Pagurus bernhardus L. (Crustacea, Decapoda). Cah. Biol. mar. 29: 109–133Google Scholar
  12. Christiansen, M. E., Christiansen, B. O. (1962). The Crustacea Decapoda of Isfjorden. A comparison with the Swedish Spitsbergen expedition in 1908. Acta boreal. (Ser. A) 19: 1–52Google Scholar
  13. Clarke, A., Morris, D. J. (1983). Towards an energy budget for krill: the physiology and biochemistry of Euphausia superba Dana. Polar Biol. 2: 69–86Google Scholar
  14. Coffin, H. G. (1958). The laboratory culture of Pagurus samuelis (Stimpson) (Crustacea, Decapoda). Walla Walla Coll. Publ. 22: 1–5Google Scholar
  15. Dawirs, R. R. (1979). Effects of temperature and salinity on larval development of Pagurus bernhardus (Decapoda, Paguridae). Mar. Ecol. Prog. Ser. 1: 323–329Google Scholar
  16. Dawirs, R. R. (1980). Elemental composition (C, N, H) in larval and crab-1 stages of Pagurus bernhardus (Decapoda: Paguridae) and Carcinus maenas (Decapoda, Portunidae). Mar. Biol. 57: 17–23Google Scholar
  17. Dawirs, R. R. (1981). Elemental composition (C, N, H) and energy in the development of Pagurus bernhardus (Decapoda: Paguridae) megalopa. Mar. Biol. 64: 117–123Google Scholar
  18. Dawirs, R. R. (1982). Methodical aspects of rearing decapod larvae, Pagurus bernhardus (Paguridae) and Carcinus maenas (Portunidae). Helgoländer Meeresunters. 35: 439–464Google Scholar
  19. Dawirs, R. R. (1983). Respiration, energy balance and development during growth and starvation of Carcinus maenas L. larvae (Decapoda: Portunidae). J. exp. mar. Biol. Ecol. 69: 105–128Google Scholar
  20. Dawirs, R. R. (1984). Respiratory metabolism of Pagurus bernhardus (Decapoda: Paguridae) megalopa. Mar. Biol. 83: 219–223Google Scholar
  21. Dawirs, R. R., Püschel, C., Schorn, F. (1986). Temperature and growth in Carcinus maenas L. (Decapoda: Portunidae) larvae reared in the laboratory from hatching through metamorphosis. J. exp. mar. Biol. Ecol. 100: 47–74Google Scholar
  22. Elwood, R., Kennedy, H. (1988). Sex differences in shell preferences of the hermit crab Pagurus bernhardus L. Ir. Nat. J. 22: 436–440Google Scholar
  23. Fiedler, U. (1987). Das Vorkommen der Anomura- und Thalassinidea-Larven in der Deutschen Bucht. Diplomarbeit Universität Karlsruhe, KarlsruheGoogle Scholar
  24. Fotheringham, N. (1976). Effects of shell stress on the growth of hermit crabs. J. exp. mar. Biol. Ecol. 23: 299–305Google Scholar
  25. Holthuis, L. B. (1950). Decapoda. A. Natantia, Macrura Reptantia, Anomura en Stomatopoda. Fauna Ned. 15: 1–166Google Scholar
  26. Ikeda, T., Dixon, P. (1982). Body shrinkage as a possible over-wintering mechanism of the Antarctic krill, Euphausia superba Dana. J. exp. mar. Biol. Ecol. 62: 143–151Google Scholar
  27. Knowlton, R. E. (1974). Larval developmental processes and controlling factors in decapod Crustacea, with emphasis on Caridea. Thalassia jugosl. 10: 139–158Google Scholar
  28. Kurata, H. (1962). Studies on the age and growth of Crustacea. Bull. Hokkaido Reg. Fish. Res. Lab. 24: 1–115Google Scholar
  29. Lindley, J. A. (1987). Continuous plankton records: the geographical distribution and seasonal cycles of decapod crustacean larvae and pelagic post-larvae in the north-eastern Atlantic Ocean and the North Sea, 1981-3. J. mar. biol. Ass. U.K. 67: 145–167Google Scholar
  30. MacDonald, J. D., Pike, R. B., Williamson, D. I. (1957). Larvae of the British species of Diogenes, Pagurus, Anapagurus and Lithodes (Crustacea, Decapoda). Proc. zool. Soc. Lond. 128: 209–257Google Scholar
  31. Phillipi, A. (1840). Zoologische Bemerkungen. 2. Das Genus Zoe ist der erste Zustand von Pagurus. Arch. Naturgesch. 6: 184–186Google Scholar
  32. Rabalais, N. N., Gore, R. H. (1985). Abbreviated development in Decapods. In: Wenner, A. M. (ed.) Larval growth. A. A. Balkema, Rotterdam, Boston, p. 67–126Google Scholar
  33. Rathke, H. (1840). Zur Entwicklungsgeschichte der Dekapoden. Arch. Naturgesch. 6: 241–249Google Scholar
  34. Rees, C. B. (1952). Continuous plankton records: the Decapod larvae in the North Sea, 1947–1949. Hull Bull. mar. Ecol. 22: 157–184Google Scholar
  35. Roberts, P. E. (1971). Zoea larvae of Pagurus campbelli Filhol, 1885, from Perseverance Harbour, Campbell Island (Decapoda: Paguridae). J. R. Soc. N.Z. 1: 187–196Google Scholar
  36. Ross, R. M. (1982) Energetics of Euphausia pacifica. I. Effects of body carbon and nitrogen and temperature on measured and predicted production. Mar. Biol. 68: 1–13Google Scholar
  37. Salonen, K., Sarvala, J., Hakala, I., Viljanen, M.-L. (1976). The relation of energy and organic carbon in aquatic invertebrates. Limnol. Oceanogr. 21: 724–730Google Scholar
  38. Sandifer, P. A., Smith, T. I. J. (1979). Possible significance of variation in the larval development of palaemonid shrimp. J. exp. mar. Biol. Ecol. 39: 55–64Google Scholar
  39. Sars, G. O. (1890). Bidrag til Kundskaben om Decapodernes Forvandlinger. II. Lithodes - Eupagurus - Spiropagurus -Galathodes - Galathea - Munida - Porcellana - (Nephrops). Arch. Math. Natur. 13: 133–201Google Scholar
  40. Schellenberg, A. (1928). Krebstiere oder Crustacea. II. Decapoda, Zehnfüßer. Die Tierwelt Deutschlands und der angrenzenden Meeresteile, Verlag Gustav Fischer, JenaGoogle Scholar
  41. Silas, E. G., Mathew, K. J. (1977). A critique to the study of larval development in Euphausiacea. Proc. Symp. Warm Water Zooplankton: 571–582Google Scholar
  42. Spight, T. M. (1977). Availability and use of shells by intertidal hermit crabs. Biol. Bull. mar. biol. Lab., Woods Hole 152: 120–133Google Scholar
  43. Ziegelmeier, E. (1978). Macrobenthos investigations in the eastern part of the German Bight from 1950 to 1974. Rapp. P.-v.-Réun. Cons. perm. int. Explor. Mer 172: 432–444Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • K. Anger
    • 1
  1. 1.Biologische Ansfalt HelgolandHelgolandFRG

Personalised recommendations