Antonie van Leeuwenhoek

, Volume 49, Issue 3, pp 209–224 | Cite as

Carbohydrate metabolism in lactic acid bacteria

  • Otto Kandler


The term “lactic acid bacteria” is discussed. An overview of the following topics is given: main pathways of homo- and heterofermentation of hexoses, i.e. glycolysis, bifidus pathway, 6-phosphogluconate pathway; uptake and dissimilation of lactose (tagatose pathway); fermentation of pentoses and pentitols; alternative fates of pyruvate, i.e. splitting to formate and acetate, CO2 and acetate or formation of acetoin and diacetyl; lactate oxidation; biochemical basis for the formation of different stereoisomers of lactate.


Acetate Carbohydrate Lactate Pyruvate Lactic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. G. and McKay, L. L. 1977. Plasmids, loss of lactose metabolism, and appearance of partial and full lactose-fermenting revertants in Streptococcus cremoris B1. — J. Bacteriol. 129, 367–377.Google Scholar
  2. Archibald, F. S. and Fridovich, I. 1981. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. — J. Bacteriol. 145: 442–451.Google Scholar
  3. Archibald, F. S. and Fridovich, I. 1982. The scavenging of superoxide radical by manganous complexes: in vitro. — Arch. Biochem. Biophys. 214: 452–463.Google Scholar
  4. Barre, P. 1978. Identification of thermobacteria and homofermentative, thermophilic, pentoseutilizing lactobacilli from high temperature fermenting grape musts. — J. Appl. Bacteriol. 44: 125–129.Google Scholar
  5. Bissett, D. L. and Anderson, R. L. 1974. Lactose and d-galactose metabolism in group N streptococci: presence of enzymes for both the d-galactose 1-phosphate and d-tagatose 6-phosphate pathways. — J. Bacteriol. 117: 318–320.Google Scholar
  6. Brown, J. P. and VanDemark, P. J. 1968. Respiration of Lactobacillus casei. — Can. J. Microbiol. 14: 829–835.Google Scholar
  7. Cori, C. F. and Cori, G. T. 1929. Glycogen formation in the liver from d- and l-lactic acid. —J. Biol. Chem. 81: 389–403.Google Scholar
  8. Crow, V. L., Davey, G. P., Pearce, L. E. and Thomas, T. D. 1983. Plasmid linkage of the d-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism. — J. Bacteriol. 153: 76–83.Google Scholar
  9. De Vries, W., Kapteijn, W. M. C., Van der Beek, E. G. and Stouthamer, A. H. 1970. Molar growth yields and fermentation balances of Lactobacillus casei 13 in batch cultures and in continuous cultures. — J. Gen. Microbiol. 63: 333–345.Google Scholar
  10. De Vries, W. and Stouthamer, A. H. 1968. Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria. — J. Bacteriol. 96: 472–478.Google Scholar
  11. Dirar, H. and Collins, E. B. 1972. End-products, fermentation balances and molar growth yields of homofermentative lactobacilli. — J. Gen. Microbiol. 73: 233–238.Google Scholar
  12. Dirar, H. and Collins, E. B. 1973. Aerobic utilization of low concentrations of galactose by Lactobacillus plantarum — J. Gen. Microbiol. 78: 211–215.Google Scholar
  13. Doelle, H. W. 1975. Bacterial Metabolism, 2nd ed. — Academic Press, New York.Google Scholar
  14. Dunlop, R. H. and Hammond, P. B. 1965. d-Lactic acidosis of ruminants. — Ann. N. Y. Acad. Sci. 119: 1109–1152.Google Scholar
  15. FAO/WHO 1967. Expert Committee on Food Additives. — WHO/Food Add. 29: 144–148.Google Scholar
  16. Fukui, S., Oi, A., Obayashi, A. and Kitahara, K. 1957. Studies on the pentose metabolism by microorganisms. I. A new type-lactic acid fermentation of pentoses by lactic acid bacteria. —J. Gen. Appl. Microbiol. 3: 258–268.Google Scholar
  17. Giesecke, D., Fabritius, A. and Van Wallenberg, P. 1981. A quantitative study on the metabolism of d(-) lactic acid in the rat and the rabbit. — Comp. Biochem. Physiol. 69B: 85–89.Google Scholar
  18. Gottschalk, G. 1979. Bacterial Metabolism.—Springer, New York.Google Scholar
  19. Götz, F., Elstner, E. F., Sedewitz, B. and Lengfelder, E. 1980a. Oxygen utilization by Lactobacillus plantarum. II. Superoxide and superoxide dismutation—Arch. Microbiol. 125: 215–220.Google Scholar
  20. Götz, F. and Lengfelder, E. 1983. On the mechanism of the catalytic scavenging of superoxide radical by manganese pyrophosphate: a pulse radiolysis study.—Proc. Third Intern. Conf. on Superoxide and Superoxide Dismutases, New York, in press.Google Scholar
  21. Götz, F., Sedewitz, B. and Elstner, E. F. 1980b. Oxygen utilization by Lactobacillus plantarum. I. Oxygen consuming reactions.—Arch. Microbiol. 125: 209–214.Google Scholar
  22. Greenblatt, J. and Schleif, R. 1971. Arabinose C protein: regulation of the arabinose operon in vitro.—Nature New Biol. 233: 166–170.Google Scholar
  23. Gunsalus, I. C., Dolin, M. I. and Struglia, L. 1952. Pyruvic acid metabolism. III. A manometric assay for pyruvate oxidation factor.—J. Biol. Chem. 194: 849–857.Google Scholar
  24. Hager, L. P., Geller, D. M. and Lipmann, F. 1954. Flavoprotein-catalyzed pyruvate oxidation in Lactobacillus delbrueckii.—Fed. Proc. 13: 734–738.Google Scholar
  25. Hensel, R., Mayr, U., Lins, C. and Kandler, O. 1981. Amino acid sequence of a dodecapeptide from the substrate-binding region of the l-lactate dehydrogenase from Lactobacillus curvatus, Lactobacillus xylosus and Bacillus stearothermophilus.—Hoppe-Seyler's Z. Physiol. Chem. 362: 1031–1036.Google Scholar
  26. Hensel, R., Mayr, U., Stetter, K. O. and Kandler, O. 1977. Comparative studies of lactic acid dehydrogenases from Lactobacillus casei ssp. casei and Lactobacillus curvatus.—Arch. Microbiol. 112: 81–93.Google Scholar
  27. Höchst, M. 1979. Untersuchungen zur Laktatoxidation bei Lactobazillen. — Dissertation, Universität München.Google Scholar
  28. Hontebeyrie, M. and Gasser, F. 1975. Comparative immunological relationships of two distinct sets of isofunctional dehydrogenases in the genus Leuconostoc.—Intern. J. System. Bacteriol. 25: 1–6.Google Scholar
  29. Ingram, M. 1975. The lactic acid bacteria—a broad view. p. 1–13. In J. G. Carr, C. V. Cutting, and G. C. Whiting (eds), Lactic Acid Bacteria in Beverages and Foods. Fourth Long Ashton Symposium 1973.—Academic Press, London.Google Scholar
  30. Irr, J. and Englesberg, E. 1970. Nonsense mutants in the regulator gene araC of the l-arabinose system of Escherichia coli B/r.—Genetics 65: 27–39.Google Scholar
  31. Johnson, K. G. and McDonald, I. J. 1974. β-d-Phosphogalactosicde galactohydrolase from Streptococcus cremoris HP: purification and enzyme properties.—J. Bacteriol. 117: 667–674.Google Scholar
  32. Jönsson, H. and Pettersson, H.-E. 1977. Studies on the citric acid fermentation in lactic starter cultures with special interest in α-aceto-lactic acid. 2. Metabolic studies.—Milchwissenschaft 32: 587–594.Google Scholar
  33. Kandler, O. 1981. Archaebakterien und Phylogenie der Organisment.—Naturwissenschaften 68: 183–192.Google Scholar
  34. Katz, L. 1970. Selection of araB and araC mutants of Escherichia coli b/r by resistance to ribitol. —J. Bacteriol. 102, 593–595.Google Scholar
  35. Kitahara, K., Obayashi, A. and Fukui, S. 1957. On the lactic acid recemase (racemiase) of lactic acid bacteria, with a special reference to the process of its formation.—Proc. Intern. Symp. Enzyme Chemistry, Tokyo and Kyoto, p. 460–463.Google Scholar
  36. Kono, Y., Takahashi, M.-A. and Asada, K. 1976. Oxidation of manganous pyrophosphate by superoxide radicals and illuminated spinach chloroplasts.—Arch. Biochem. Biophys. 174: 454–462.Google Scholar
  37. Krusch, U. 1978. Ernährungsphysiologische Gesichtspunkte der l (+) und d (-)-Milchsäure.—Milchwirtsch. Forsch. Ber. 30: 341–346.Google Scholar
  38. Kunath, P. and Kandler, O. 1980. Der Gehalt und l(+)- und d(-)-Milchsãure in Joghurtprodukten. — Milchwissenschaft 35: 470–473.Google Scholar
  39. Lauer, E., Helming, Ch. and Kandler, O. 1980. Heterogeneity of the species Lactobacillus acidophilus (Moro) Hansen and Moquot as revealed by biochemical characteristics and DNA-DNA hybridisation.—Zbl. Bakt. Hyg., I. Abt. Orig. C 1: 150–168.Google Scholar
  40. Lauer, E. and Kandler, O. 1976. Mechanismus der Variation des Verhältnisses Acetat/Lactat bei der Vergärung von Glucose durch Bifidobakterien.—Arch. Microbiol. 110: 271–277.Google Scholar
  41. Lawrence, R. C. and Thomas, T. D. 1979. The fermentation of milk by lactic acid bacteria. p. 187–219. In A. T. Bull, D. C. Ellwood and C. Ratledge (eds), Microbial Technology: Current State, Future Prospects. Soc. Gen. Microbiol., Symp. 29.—University Press, Cambridge.Google Scholar
  42. London, J. 1968. Regulation and function of lactate oxidation in Streptococcus faecium.—J. Bacteriol. 95: 1380–1387.Google Scholar
  43. London, J. 1976. The ecology and taxonomic status of the lactobacilli.—Ann. Rev. Microbiol. 30: 279–301.Google Scholar
  44. London, J. and Chace, N. M. 1977. New pathway for the metabolism of pentitols.—Proc. Natl Acad. Sci. USA 74: 4296–4300.Google Scholar
  45. London, J. and Chace, N. M. 1979. Pentitol metabolism in Lactobacillus casei.—J. Bacteriol. 140: 949–954.Google Scholar
  46. London, J., Chase, N. M. and Kline, K. 1975. Aldolases of lactic acid bacteria: immunological relationships among aldolases of streptococci and gram-positive nonsporeforming anaerobes. —Intern. J. System. Bacteriol. 25: 114–123.Google Scholar
  47. Lumsden, J. and Hall, D. O. 1975. Chloroplast manganese and superoxide.—Biochem. Biophys. Res. Commun. 64: 595–602.Google Scholar
  48. Mayr, U., Hensel, R. and Kandler, O. 1982. Subunit composition and substrate binding region of potato l-lactate dehydrogenase.—Phytochemistry 21: 627–731.Google Scholar
  49. McKay, L., Miller III, A., Sandine, W. E. and Elliker, P. R. 1970. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.—J. Bacteriol. 102: 804–809.Google Scholar
  50. O'Kane, D. J. and Gunsalus, I. C. 1948. Pyruvic acid metabolism. A factor required for oxidation by Streptococcus faecalis.—J. Bacteriol. 56: 499–506.Google Scholar
  51. Orla-Jensen, S. 1919. The Lactic Acid Bacteria.—Anhr. Fred. Høst and Søn, Copenhagen.Google Scholar
  52. Postma, P. W. and Roseman, S. 1976. The bacterial phosphoenolpyruvate: sugar phosphotransferase system.—Biochim. Biophys. Acta 457: 213–257.Google Scholar
  53. Premi, L., Sandine, W. E. and Elliker, P. R. 1972. Lactose-hydrolyzing enzymes of Lactobacillus species.—Appl. Microbiol. 24: 51–57.Google Scholar
  54. Scardovi, V. 1982. The genus Bifidobacterium. p. 1951–1961. In M. P. Starr, H. Stolp, H. G. Trüper, A. Balows and H. G. Schlegel (eds), The Prokaryotes.—Springer, Berlin.Google Scholar
  55. Sheppard, D. and Englesberg, E. 1966. Positive control in the l-arabinose gene-enzyme complex of Escherichia B/r as exhibited with stable merodiploids—Cold Spring Harbor Symp. Quant. Biol. 31: 345–347.Google Scholar
  56. Sheppard, D. E. and Englesberg, E. 1967. Further evidence for positive control of the l-arabinose system by gene araC.—J. Mol. Biol. 25: 443–454.Google Scholar
  57. Snoswell, A. M. 1959. Flavins of Lactobacillus arabinossus 17.5. A lactic dehydrogenase containing a flavin prosthetic group.—Austr. J. Exp. Biol. 37: 49–64.Google Scholar
  58. Snoswell, A. M. 1963. Oxidized nicotinamide-adenine dinucleotide-independent lactate dehydrogenases of Lactobacillus arabinosus 17.5.—Biochim. Biophys. Acta 77: 7–19.Google Scholar
  59. Speck, M. L. 1976. Interactions among lactobacilli and man.—J. Dairy Sci. 59: 338–343.Google Scholar
  60. Speckman, R. A. and Collins, E. B. 1968. Diacety biosynthesis in Streptococcus diacetilactis and Leuconostoc citrovorum.—J. Bacteriol. 95: 174–180.Google Scholar
  61. Speckman, R. A. and Collins, E. B. 1973. Incorporation of radioactive acetate into diacetyl by Streptococcus diacetilactis.—Appl. Microbiol. 26, 744–746.Google Scholar
  62. Stackebrandt, E., Fowler, V. J. and Woese, C. R. 1983. A phylogenetic analysis of lactobacilli, Pediococcus pentosaceus and Leuconostoc mesenteroides.—System. Appl. Microbiol. 4: 326–337.Google Scholar
  63. Stackebrandt, E. and Woese, C. R. 1981. The evolution of prokaryotes. p. 1–31. In M. J. Carlile, J. F. Collins and B. E. B. Moseley (eds), Molecular and Cellular Aspects of Microbial Evolution. Soc. Gen. Microbiol., Symp. 32.—University Press, Cambridge.Google Scholar
  64. Stein, J., Fackler, J. P. Jr., Mc Clune, G. J., Fee, J. A. and Chan, L. T. 1979. Superoxide and manganese. III. Reactions of Mn-EDTA and Mn-CyDTA complexes with O2. X-ray structure of KMn-EDTA. 2H2O.—Inorg. Chem. 18: 3511–3519.Google Scholar
  65. Stetter, H. 1974. Biochemische und bakteriologische Untersuchungen zur Bewetung der Arabinosevergärung als taxonomisches Merkmal bei heterofermentativen Milchsäurebakterien.—Dissertation, Universität München.Google Scholar
  66. Stetter, K. O. 1974. Production of exclusively l(+)-lactic acid containing food by controlled fermentation. —Proc. First Intersect. Congr. JAMS, Tokyo, Vol. 2, p. 164–168.Google Scholar
  67. Stetter, K. O. and Kandler, O. 1973a. Untersuchungen zur Entstehung von dl-Milchäure bei Lactobacillen und Charakterisierung einer Milchsäureracemase bei einigen Arten der Untergattung Streptobacterium.—Arch. Mikrobiol. 94: 221–247.Google Scholar
  68. Stetter, K. O. and Kandler, O. 1973b. Manganese requirement of the transcription processes in Lactobacillus curvatus.—FEBS Lett. 36: 5–8.Google Scholar
  69. Stetter, K. O. and Zillig, W. 1974. Transcription in Lactobacillaceae. DNA-dependent RNA polymerase from Lactobacillus curvatus.—Eur. J. Biochem. 48: 527–540.Google Scholar
  70. Strittmatter, C. F. 1959a. Electron transport to oxygen in lactobacilli.—J. Biol. Chem. 234: 2789–2793.Google Scholar
  71. Strittmatter, C. F. 1959b. Flavin-linked oxidative enzymes of Lactobacillus casei.—J. Biol. Chem. 234: 2794–2800.Google Scholar
  72. Thomas, T. D. 1976. Regulation of lactose fermentation in group N streptococci.—Appl. Environ. Microbiol. 32: 474–478.Google Scholar
  73. Thompson, J. 1979. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo.—J. Bacteriol. 140: 774–785.Google Scholar
  74. Thompson, J. 1980. Galactose transport systems in Streptococcus lactis.—J. Bacteriol. 144: 683–691.Google Scholar
  75. Thompson, J. and Thomas, T. D. 1977. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis.—J. Bacteriol. 130: 583–595.Google Scholar
  76. Winter, J. 1974. Der Einfluß von organischen Säuren und von Sauerstoff auf die Gär- und Energiebilanz von Leuconostoc und verschiedener Lactobacillen.—Dissertation. Universität München.Google Scholar
  77. Woese, C. R. 1982. Archaebacteria and cellular origins: An overview.—Zbl. Bakt. Hyg., I. Abt. Orig. C3: 1–17.Google Scholar
  78. Zubay, G., Gielow, L. and Englesberg, E. 1971. Cell-free studies on the regulation of the arabinose operon.—Nature New Biol. 223: 164–165.Google Scholar

Copyright information

© H. Veenman & Zonen B.V. 1983

Authors and Affiliations

  • Otto Kandler
    • 1
  1. 1.Botanisches InstitutUniversity of MünchenMünchen 19Germany

Personalised recommendations