Antonie van Leeuwenhoek

, Volume 42, Issue 1–2, pp 59–71 | Cite as

Oxidation of ethylene by soil bacteria

  • J. A. M. de Bont
Biochemistry

Abstract

The course of the biological oxidation of ethylene by soil was dependent on the type of soil used as well as on other factors. As evidenced from an increase in oxidation rate, the ethylene-consuming microorganisms in soil could grow at the expense of ethylene, even when the gas was present at concentrations of 50 ppm or less. Five strains of bacteria strongly resembling each other were isolated from different soils. These pleomorphic, gram-positive, acid-fast, obligate aerobic, ethylene-oxidizing bacteria grew also on saturated alkanes and on ordinary carbon sources. An apparent Km for ethylene of approximately 40 ppm was estimated for whole-cell suspensions of strain E20 by following the disappearance of the gas from the atmosphere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, F. B. 1973. Ethylene in plant biology. — New York and London, Academic Press.Google Scholar
  2. Abeles, F. B., Craker, L. E., Forrence, L. E. and Leather, G. R. 1971. Fate of air pollutants: removal of ethylene, sulfur dioxide, and nitrogen dioxide by soil. — Science 173: 914–916.Google Scholar
  3. Birch-Hirschfeld, L. 1932. Die Umsetzung von Acetylen durch Mycobacterium lacticola. —Zentralbl. Bakteriol. II. Abt. 86: 113–129.Google Scholar
  4. de Bont, J. A. M. 1975. Oxidation of ethylene by bacteria. — Ann. Appl. Biol. 81: 119–121.Google Scholar
  5. de Bont, J. A. M. and Mulder, E. G. 1974. Nitrogen fixation and co-oxidation of ethylene by a methane-utilizing bacterium. — J. Gen. Microbiol. 83: 113–121.Google Scholar
  6. Considine, P. J. and Patching, J. W. 1975. Ethylene production by micro-organisms grown on phenolic acids. — Ann. Appl. Biol. 81: 115–119.Google Scholar
  7. Davies, S. L. and Whittenbury, R. 1970. Fine structure of methane and other hydrocarbon-utilizing bacteria. — J. Gen. Microbiol. 61: 227–232.Google Scholar
  8. Davis, J. B., Chase, H. H. and Raymond, R. L. 1956. Mycobacterium paraffinicum n.sp., a bacterium isolated from soil. — Appl. Microbiol. 4: 310–315.Google Scholar
  9. Guérin, H. 1952. Traité de manipulation et d'analyse des gaz. — Masson (ed.) Paris.Google Scholar
  10. Ilag, L. and Curtis, R. W. 1968. Production of ethylene by fungi. — Science 159: 1357–1358.Google Scholar
  11. Lynch, J. M. 1975. Ethylene in soil. — Nature 256: 576–577.Google Scholar
  12. Lynch, J. M. and Harper, S. H. T. 1974. Formation of ethylene by a soil fungus. — J. Gen. Microbiol. 80: 187–195.Google Scholar
  13. Smith, A. M. and Cook, R. J. 1974. Implications of ethylene production by bacteria for biological balance of soil. — Nature 252: 703–705.Google Scholar
  14. Smith, K. A., Bremner, J. M. and Tabatabai, M. A. 1973. Sorption of gaseous atmospheric pollutants by soils. — Soil Sci. 116: 313–319.Google Scholar
  15. Smith, K. A. and Scott Russell, R. 1969. Occurrence of ethylene, and its significance, in anaerobic soil. — Nature 222: 769–771.Google Scholar
  16. Smith, K. A. and Restall, S. W. F. 1971. The occurrence of ethylene in anaerobic soil. — J. Soil Sci. 22: 430–443.Google Scholar
  17. Tausz, J. und Donath, P. 1930. Über die Oxydation des Wasserstoffs und der Kohlenwasserstoffe mittels Bakterien. — Z. Physiol. Chem. 190: 141–168.Google Scholar
  18. Yoshida, T. and Suzuki, M. 1975. Formation and degradation of ethylene in submerged rice soils. — Soil Sci. Plant Nutr. 21: 129–135.Google Scholar

Copyright information

© H. Veenman en Zonen 1976

Authors and Affiliations

  • J. A. M. de Bont
    • 1
  1. 1.Laboratory of MicrobiologyAgricultural UniversityWageningenThe Netherlands

Personalised recommendations