Antonie van Leeuwenhoek

, Volume 58, Issue 4, pp 291–298 | Cite as

Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments

  • Aharon Oren


Glycine betaine is accumulated as a compatible solute in many photosynthetic and non-photosynthetic bacteria — the last being unable to synthesize the compound - and thus large pools of betaine can be expected to be present in hypersaline environments. A variety of aerobic and anaerobic microorganisms degrade betaine to among other products trimethylamine and methylamine, in a number of different pathways. Curiously, very few of these betaine breakdown processes have yet been identified in hypersaline environments. Trimethylamine can also be formed by bacterial reduction of trimethylamine N-oxide (also by extremely halophilic archaeobacteria). Degradation of trimethylamine in hypersaline environments by halophilic methanogenic bacteria is relatively well documented, and leads to the formation of methane, carbon dioxide and ammonia.

Key words

glycine betaine trimethylamine trimethylamine N-oxide cyanobacteria halobacteria methanogens 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barret EL & Kwan HS (1985) Bacterial reduction of trimethylamine oxide. Ann. Rev. Microbiol. 39: 131–149CrossRefGoogle Scholar
  2. Bernard T, Pocard JA, Perroud B & Le Rudulier D (1986) Variations in the response of salt-stressed Rhizobium strains to betaines. Arch. Microbiol. 143: 359–364Google Scholar
  3. Delwiche CC & Bregoff HM (1958) Pathway of betaine and choline synthesis in Beta vulgaris. J. Biol. Chem. 223: 430–433Google Scholar
  4. Gabbay-Azaria R, Tel-Or E & Schonfeld M (1988) Glycinebetaine as an osmoregulant and compatible solute in the marine cyanobacterium Spirulina subsalsa. Arch. Biochem. Biophys. 264: 333–339PubMedGoogle Scholar
  5. Galinski EA & Trüper HG (1982) Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol. Letters 13: 357–360CrossRefGoogle Scholar
  6. Giani D, Giani L, Cohen Y & Krumbein WE (1985) Methanogenesis in the hypersaline Solar Lake (Sinai). FEMS Microbiol. Letters. 25: 219–224CrossRefGoogle Scholar
  7. Heijthuijsen JHFG & Hansen TA (1989a) Betaine fermentation and oxidation by marine Desulfuromonas strains. Appl. Environ. Microbiol. 154: 965–969Google Scholar
  8. Heijthuijsen JHFG & Hansen TA (1989b) Anaerobic degradation of betaine by marine Desulfobacterium strains. Arch. Microbiol. 152: 393–396Google Scholar
  9. Hippe H, Caspari D, Fiebig K & Gottschalk G (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl. Acad. Sci. USA 76: 494–498PubMedGoogle Scholar
  10. Hormann K & Andreesen JR (1989) Reductive cleavage of sarcosine and betaine in Eubacterium acidaminophilum via enzyme systems different from glycine reductase. Arch. Microbiol. 153: 50–59CrossRefGoogle Scholar
  11. Ikuta S, Matuura K, Imamura S, Misaki H & Horiuti Y (1977) Oxidative pathway of choline to betaine in the soluble fraction prepared from Arthrobacter globiformis. J. Biochem. 82: 157–163PubMedGoogle Scholar
  12. Imhoff JF & Rodriguez-Valera F (1984) Betaine is the main compatible solute of halophilic eubacteria. J. Bacteriol. 160: 478–479PubMedGoogle Scholar
  13. King GM (1984) Metabolism of trimethylamine, choline, and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments. Appl. Environ Microbiol. 48: 719–725Google Scholar
  14. King GM (1988) Methanogenesis from methylated amines in a hypersaline algal mat. Appl. Environ. Microbiol. 54: 130–136Google Scholar
  15. Large PJ & Green J (1984) Oxidation of mono- di-, and trimethylamine by methazotrophic yeasts: properties of the microsomal and peroxisomal enzymes involved and comparison with bacterial enzyme systems. In: Crawford RL & Hanson RS (Eds) Microbial Growth on C1 Compounds (pp 155–164). American Society for Microbiology, Washington, D.C.Google Scholar
  16. Le Rudulier D & Bernard T (1986) Salt tolerance in Rhizobium: a possible role for betaines. FEMS Microbiol. Rev. 39: 67–72CrossRefGoogle Scholar
  17. Le Rudulier D & Bouillard L (1983) Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Appl. Environ. Microbiol. 46: 152–159PubMedGoogle Scholar
  18. Mackay MA, Norton RS & Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J. Gen. Microbiol. 130: 2177–2191Google Scholar
  19. Madigan MT, Cox JC & Gest H (1980) Physiology of dark fermentative growth of Rhodopseudomonas capsulata. J. Bacteriol. 142: 908–915PubMedGoogle Scholar
  20. Mathrani IM & Boone DR (1985) Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl. Environ. Microbiol. 50: 140–143Google Scholar
  21. Mohammad FAA, Reed RH & Stewart WDP (1983) The halophilic cyanobacterium Synechocystis DUN52 and its osmotic responses. FEMS Microbiol. Letters 16: 287–290CrossRefGoogle Scholar
  22. Möller B, Oßmer R, Howard BH, Gottschalk G & Hippe H (1984) Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch. Microbiol. 139: 388–396Google Scholar
  23. Moore DJ, Reed RH & Stewart WDP (1987) A glycine betaine transport system in Aphanothece halophytica and other glycine betaine synthesising cyanobacteria. Arch. Microbiol. 147: 399–405Google Scholar
  24. Müller E, Fahlbusch K, Walther R & Gottschalk G (1981) Formation of N,N-dimethylglycine, acetic acid and butyric acid from betaine by Eubacterium limosum. Appl. Environ. Microbiol. 42: 439–445Google Scholar
  25. Naumann E, Hippe H & Gottschalk G (1983) Betaine: new oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by a Clostridium sporogenes-Methanosarcina barkeri coculture. Appl. Environ. Microbiol. 45: 474–483Google Scholar
  26. Nicolaus B, Lanzotti V, Trincone A, De Rosa M, Grant WD & Gambacorta A (1989) Glycine betaine and polar lipid composition in halophilic archaebacteria in response to growth in different salt concentrations. FEMS Microbiol. Letters 59: 157–160CrossRefGoogle Scholar
  27. Oremland RS (1988) Biogeochemistry of methanogenic bacteria. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms (pp 641–706). John Wiley & Sons, New YorkGoogle Scholar
  28. Oremland RS & King GM (1989) Methanogenesis in hypersaline environments. In: Cohen Y & Rosenberg E (Eds) Microbial Mats. Physiological Ecology of Benthic Microbial Communities (pp 180–190). American Society for Microbiology, Washington, D.C.Google Scholar
  29. Oren A (1988) Anaerobic degradation of organic compounds at high salt concentrations. Antonie v. Leeuwenhoek 54: 267–277Google Scholar
  30. Oren A (1989) Photosynthetic and heterotrophic benthic bacterial communities of a hypersaline sulfur spring on the shore of the Dead Sea (Hamei Mazor). In: Cohen Y & Rosenberg E (Eds) Microbial Mats. Physiological Ecology of Benthic Microbial Communities (pp 64–76). American Society for Microbiology, Washington, D.CGoogle Scholar
  31. Oren A, Kessel M & Stackebrandt E (1989) Ectothiorhodospira marismortui sp. nov., an obligately anaerobic, moderately halophilic purple sulfur bacterium from a hypersaline sulfur spring on the shore of the Dead Sea. Arch. Microbiol. 151: 524–529Google Scholar
  32. Oren A, Pohla H & Stackebrandt E (1987) Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb. nov., and description of Sporohalobacter marismortui. System. Appl. Microbiol. 9: 239–246Google Scholar
  33. Oren A & Trüper HG (1990) Anaerobic growth of halophilic archaeobacteria by reduction of dimethylsulfoxide and trimethylamine N-oxide. FEMS Microbiol. Letters 70: 33–36CrossRefGoogle Scholar
  34. Paterek JR & Smith PH (1985) Isolation and characterization of a halophilic methanogen from Great Salt Lake. Appl. Environ. Microbiol. 52: 877–881Google Scholar
  35. Rafaeli-Eshkol D & Avi-Dor Y (1968) Studies in halotolerance in a moderately halophilic bacterium. Effect of betaine on salt resistance of the respiratory system. Biochem. J. 109: 687–691PubMedGoogle Scholar
  36. Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC, Moore DJ & Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol. Rev. 39: 51–56CrossRefGoogle Scholar
  37. Robertson DE, Noll D, Roberts MF, Menaia JAGF & Boone DR (1990) Detection of the osmoregulator betaine in methanogens. Appl. Environ. Microbiol. 56: 563–565PubMedGoogle Scholar
  38. Roth WG, Leckie MP & Dietzler DN (1988) Restoration of colony-forming activity in osmotically stressed Escherichia coli by betaine. Appl. Environ. Microbiol. 54: 3142–3146PubMedGoogle Scholar
  39. Schweinfurth G & Lewin L (1898) Beiträge zur Topographie und Geochemie des ägyptischen Natron-Thals. Zeitschr. d. Ges. f. Erdk. 33: 1–25Google Scholar
  40. Strøm AR, Olafsen JA & Larsen H (1979) Trimethylamine oxide: a terminal electron acceptor in anaerobic respiration of bacteria. J. Gen. Microbiol. 112: 315–320PubMedGoogle Scholar
  41. Trüper HG & Galinski EA (1989) Compatible solutes in halophilic phototrophic procaryotes. In: Cohen Y & Rosenberg E (Eds) Microbial Mats. Physiological Ecology of Benthic Microbial Communities (pp 342–348). American Society for Microbiology, Washington, D.C.Google Scholar
  42. Tschichholz I & Trüper HG (1990) Fate of compatible solutes during dilution stress in Ectothiorhodospira halochloris. FEMS Microb. Ecol. 73: 181–186Google Scholar
  43. Wohlfarth A, Severin J & Galinski EA (1990) The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. J. Gen. Microbiol. 136: 705–712Google Scholar
  44. Yancey PH, Clark ME, Hand SC, Bowlus RD & Somero GN (1982) Living with water stress: Evolution of osmolyte systems. Science 217: 1214–1222PubMedGoogle Scholar
  45. Zhilina TN (1986) Methanogenic bacteria from hypersaline environments. System. Appl. Microbiol. 7: 216–222Google Scholar
  46. Zhilina TN & Zavarzin GA (1990a) A new extremely halophilic homoacetogen bacteria Acetohalobium arabaticum, gen. nov., sp. nov. Dokl. Akad. Nauk. SSSR 311: 745–747 (in Russian)Google Scholar
  47. Zhilina TN & Zavarzin GA (1990b) Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev. (in press)Google Scholar
  48. Zindel U, Freudenberg W, Rieth M, Andreesen JR, Schnell J & Widdel F (1988) Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies. Arch. Microbiol. 150: 254–266Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Aharon Oren
    • 1
  1. 1.The Division of Microbial and Molecular Ecology, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations