Letters in Mathematical Physics

, Volume 7, Issue 5, pp 399–406 | Cite as

Some properties of orbit space in Yang-Mills theory

  • S. N. Vergeles


In Yang-Mills theory, it is shown that the Ricci tensor in the orbit space is always positively defined. Nevertheless, the orbit space cannot be considered as compact because it contains infinite-dimensional Euclidean hypersurfaces.


Statistical Physic Group Theory Ricci Tensor Orbit Space Euclidean Hypersurface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    GrossD.J. and WilczekF., Phys. Rev. D8, 3633 (1973); Politzer, H.D., Phys. Rep. 14, 129 (1974).Google Scholar
  2. 2.
    BabelonO. and VialletC.M., Phys. Lett. 85B, 246 (1979); Phys. Lett. 103B, 45 (1981); Comm. Math. Phys. 81, 515 (1981).Google Scholar
  3. 3.
    Vergeles, S.N., ‘Orbit Space in the Non-Abelian Gauge Theory’, Chernogolovka preprint, 1980.Google Scholar
  4. 4.
    CartanE., Lecons sur le geometric des espace de Riemann, Gauthier-Villars, Paris, 1946.Google Scholar
  5. 5.
    BelavinA., PolyakovA., SchwartzA., and TyupkinY., Phys. Lett. 59B, 85 (1975).Google Scholar
  6. 6.
    PolyakovA., Nucl. Phys. B120, 429 (1977).Google Scholar
  7. 7.
    WilsonK.G., Phys. Rev. D10, 2445 (1974); Polyakov, A., Phys. Lett. 59B, 82 (1975); Kogut, J. and Susskind, L., Phys. Rev. D16, 395 (1975).Google Scholar
  8. 8.
    VergelesS.N., Nucl. Phys. B208, 301 (1982); Nucl. Phys. B, to be published.Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • S. N. Vergeles
    • 1
  1. 1.The Landau Institute for Theoretical PhysicsThe Academy of Sciences of the U.S.S.R.MoscowU.S.S.R.

Personalised recommendations