Advertisement

Planta

, Volume 171, Issue 3, pp 386–392 | Cite as

Activation of fatty acids by non-glyoxysomal peroxisomes

  • H. Gerbling
  • B. Gerhardt
Article

Abstract

Peroxisomes from mung-bean hypocotyls catalyze, in the presence of fatty acids, CoASH, ATP, and MgCl2, the formation of acyl-CoA, AMP, and pyrophosphate in a 1:1:1 stoichiometry. This observation demonstrates that the peroxisomes of mung-bean hypocotyls possess an acyl-CoA synthetase (EC 6.2.1.3) for fatty-acid activation. Acyl-CoA synthetase activity is associated with the non-glyoxysomal peroxisomes from various tissues. The acyl-CoA synthetase of the peroxisomes of the mung-bean hypocotyl utilizes oleic, linoleic, and linolenic acid most effectively (3 nkat·mg-1 peroxisomal protein). In contrast to the β-oxidation enzymes of the peroxisomes whith are largely solubilized in the presence of 0.2 mol·l-1 KCl, the acyl-CoA synthetase remains associated with the membrane fraction of peroxisomes. On the basis of the latency of the enzyme and its resistance to protease treatment of the peroxisomes, it is concluded that the enzyme is located at the matrix face of the peroxisome membrane.

Key words

Acyl-CoA synthetase β-Oxidation Peroxisome membrane Pisum (fatty acids) Vigna 

Abbreviation

EGTA

ethyleneglycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, J., Keegstra, K. (1983) Acyl-CoA synthetase is located in the outer membrane and acyl-CoA thioesterase in the inner membrane of pea chloroplast envelopes. Plant Physiol. 72, 735–740Google Scholar
  2. Bergmeyer, H.U., Gawehn, K., Graßl, M. (1974) Enzyme als biochemische Reagentien. In: Methoden der enzymatischen Analyse, pp. 454–558, Bergmeyer, H.U., ed. Verlag Chemie, WeinheimGoogle Scholar
  3. Block, M.A., Dorne, A.-J., Joyard, J., Douce, R. (1983) The acyl-CoA synthetase and acyl-CoA thioesterase are located on the outer and inner membrane of the chloroplast envelope, respectively. FEBS Lett. 153, 377–381Google Scholar
  4. Cooper, T.C. (1971) The activation of fatty acids in castor bean endosperm. J. Biol. Chem. 246, 3451–3455Google Scholar
  5. Douce, R., Joyard, J. (1979) Structure and function of the plastid envelope. Adv. Bot. Res. 7, 1–116Google Scholar
  6. Edwards, J., ap Rees, T., Wilson, P.M., Morrel, S. (1984) Measurement of the inorganic pyrophosphate in tissues of Pisum sativum L. Planta 162, 188–191Google Scholar
  7. Eising, R., Gerhardt, B. (1986) Activity and hematin content of catalase from greening sunflower cotyledons. Phytochemistry 25, 27–31Google Scholar
  8. Gerhardt, B. (1983) Localization of β-oxidation enzymes in peroxisomes isolated from nonfatty plant tissues. Planta 159, 238–246Google Scholar
  9. Gerhardt, B. (1986) Basic metabolic function of the higher plant peroxisome. Physiol. Vég. 24, 397–410Google Scholar
  10. Gerhardt, B. (1987a) Peroxisomes and fatty acid degradation. Methods Enzym. in pressGoogle Scholar
  11. Gerhardt, B. (1987b) Higher plant peroxisomes and fatty acid degradation. In: Peroxisomes in biology and medicine, pp. 141–151, Fahimi, D., Sies, H., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. Hashimoto, T. (1982) Individual peroxisomal β-oxidation enzymes. Ann. N.Y. Acad. Sci. 386, 5–12Google Scholar
  13. Joyard, J., Billecocq, A., Bartlett, S.G., Block, M.A., Chua, N.-H., Douce R. (1983) Localization of polypeptides to the cytosolic side of the outer envelope membrane of spinach chloroplasts. J. Biol. Chem. 258, 10 000–10 006Google Scholar
  14. Joyard, J., Stumpf, P.K. (1981) Synthesis of long-chain acyl-CoA in chloroplast envelope membranes. Plant Physiol. 67, 250–256Google Scholar
  15. Kow, Y.W., Erbes, D.L., Gibbs, M. (1982) Chloroplast respiration. A means of supplying oxidized pyridine nucleotide for dark chloroplastic metabolism. Plant Physiol. 69, 442–447Google Scholar
  16. Krisans, S.K., Mortensen, R.M., Lazarow, P.B. (1980) Acyl-CoA synthetase in rat liver peroxisomes. J. Biol. Chem. 255, 9599–9607Google Scholar
  17. Leusing, P. (1985) Photosynthetische 14C-Markierung von Aminosäuren in reifenden Weizenpflanzen, Transport und Einbau in Kornproteine. Dissertation, Universität MünsterGoogle Scholar
  18. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275Google Scholar
  19. Mannaerts, G.P., van Veldhoven, P., van Broekhoven, A., Vandebroek, G., Debeer, L.J. (1982) Evidence that peroxisomal acyl-CoA synthetase is located at the cytoplasmic side of the peroxisomal membrane. Biochem. J. 204, 17–23Google Scholar
  20. Miernyk, J.A., Trelease, R.N. (1981) Control of enzyme activities in cotton cotyledons during maturation and germination. IV. β-Oxidation. Plant Physiol. 67, 341–346Google Scholar
  21. Murphy, D.J., Mukherjee, K.D., Latzko, E. (1983) Lipid metabolism in microsomal fractions from photosynthetic tissue. Biochem. J. 213, 249–252Google Scholar
  22. Pryde, J.G., Phillips, J.H. (1986) Fractionation of membrane proteins by temperature-induced phase separation in Trition X-114. Application to subcellular fractions of the adrenal medulla. Biochem. J. 233, 525–533Google Scholar
  23. Randall, P.J., Bouma, D. (1973) Zinc deficiency, carbonic anhydrase, and photosynthesis in leaves of spinach. Plant Physiol. 52, 229–232Google Scholar
  24. Roughan, P.G., Slack, C.R. (1977) Long-chain acyl-coenzyme A synthetase activity of spinach chloroplasts is concentrated in the envelope. Biochem. J. 162, 457–459Google Scholar
  25. Schmidt, E. (1974) Glutamat-Dehydrogenase. In: Methoden der enzymatischen Analyse, pp. 689–696, Bergmeyer, H.U., ed. Verlag Chemie, WeinheimGoogle Scholar
  26. Schnarrenberger, C., Oeser, A., Tolbert, N.E. (1971) Development of microbodies in sunflower cotyledons and castor bean endosperm during germination. Plant Physiol. 48, 566–574Google Scholar
  27. Schuh, B., Gerhardt, B. (1984) Size of microbody population in sunflower cotyledons during the transition in cotyledonary microbody function. Z. Pflanzenphysiol. 114, 477–484Google Scholar
  28. Tanaka, T., Hosaka, K., Hoshimaru, M., Numa, S. (1979) Purification and properties of long-chain acyl-coenzyme-A synthetase from rat liver. Eur. J. Biochem. 98, 165–172Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • H. Gerbling
    • 1
  • B. Gerhardt
    • 1
  1. 1.Botanisches InstitutUniversität MünsterMünsterGermany

Personalised recommendations