Letters in Mathematical Physics

, Volume 2, Issue 6, pp 459–469 | Cite as

An application of hyperdifferential operators to holomorphic quantization

  • Ingrid Daubechies
Article

Abstract

We use a hyperdifferential operator approach to study holomorphic quantization. We explicitly construct the Hilbert space operator which corresponds to a given holomorphic function. We further construct the adjoint and products of such operators and we discuss some special cases of selfadjointness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    SouriauJ.M., Structure des systèmes dynamiques, Dunod, Paris 1970.Google Scholar
  2. 2.
    RemlerE., Ann. Phys. 95, 455 (1975).Google Scholar
  3. 3.
    GrossmannA., Comm. Math. Phys. 48, 191 (1976). Grossmann A., and Seiler R., Comm. Math. Phys. 48, 195 (1976).Google Scholar
  4. 4.
    PrugoveckiE., Journ. Math. Phys. 17, 517, 1673 (1976).Google Scholar
  5. 5.
    Grossmann, A., Geometry of real and complex canonical transformation in quantum mechanics, (Talk given at the VIth International Colloquium of Group Theoretical Methods in Physics, Tübingen, July 18–22, 1977). C.P.T.-C.N.R.S. Marseille Preprint, 77/p. 937.Google Scholar
  6. 6.
    Grossmann, A., Private communications.Google Scholar
  7. 6.
    AliS.T., and PrugoveckiE., Journ. Math. Phys. 18, 219 (1977).Google Scholar
  8. 7.
    TodorovT.S., Int. Journ. Theor. Phys. 16, 219 (1977).Google Scholar
  9. 8. (a)
    BayenF., FlatoM., FronsdalC., LichnerowiczA., and SternheimerD., Ann. Phys. 111, 61 (1978).Google Scholar
  10. 8. (b)
    BayenF., FlatoM., FronsdalC., LichnerowiczA., and SternheimerD., Ann. Phys. 111, 111 (1978).Google Scholar
  11. 9.
    KreeP., and RaczkaR., Ann. Inst. H. Poincaré 28, 41 (1978).Google Scholar
  12. 10.
    BabbittD., Hilbert spaces of analytic functions, in Studies in Mathematical Physics, Princeton University Press, Princeton, 1976.Google Scholar
  13. 11. (a)
    BargmannV., Comm. Pure and Appl. Math. 14, 187 (1961).Google Scholar
  14. 11. (b)
    FockV., Zeit. Physik 49, 329 (1928) Segal, I.E., Journ. Math. Phys. 6, 500 (1965).Google Scholar
  15. 12.
    MillerM., and SteinbergS., Comm. Math. Phys. 24, 40 (1971).Google Scholar
  16. 13.
    KastlerD., Comm. Math. Phys. 1, 14 (1965).Google Scholar
  17. 14.
    GrossmannA., LoupiasG., and SteinE.M., Ann. Inst. Fourier 18, 1 (1969).Google Scholar
  18. 15.
    BargmannV., Comm. Pure and Appl. Math. 20, 1 (1967).Google Scholar
  19. 16.
    ReedM., and SimonB., Methods of Modern Mathematical analysis, Part I: Functional Analysis, Academic Press, New York, 1973.Google Scholar
  20. 17.
    DunfordN., and SchwartzJ.T., Linear Operators, Part II: Spectral Theory, Interscience Publishers, J. Wiley, New York, 1963.Google Scholar

Copyright information

© D. Reidel Publishing Company 1978

Authors and Affiliations

  • Ingrid Daubechies
    • 1
  1. 1.Theoretische NatuurkundeVrije Universiteit BrusselBrusselBelgium

Personalised recommendations