Journal of Comparative Physiology B

, Volume 162, Issue 2, pp 119–130 | Cite as

Calorimetric investigations of the different castes of honey bees, Apis mellifera carnica

  • L. Fahrenholz
  • I. Lamprecht
  • B. Schricker


Honey bees of different age and castes were investigated calorimetrically at 20, 25 and 30 °C. Experiments were completed by endoscopic observation of the insects in the visible and the near infrared range and by acoustical monitoring and subsequent frequency analysis of various locomotor activities. Direct calorimetric results of this paper are compared with data of indirect calorimetry from the literature using a respiratory quotient of 1.00 and 21.13 J consumed. Agreements between both methods are generally good. The results show that weight-specific heat production rates increase with age of worker bees by a factor of 5.6 at 30 °C, 3.7 at 25 °C and 40.0 at 20 °C. In groups of foragers the heat production decreases with growing group size to around 6% of the value for an isolated bee. The presence of a fertile queen or of brood reduces the heat output of a small worker group significantly. Adult drones exhibit a much higher metabolic rate (up to 19.7-fold at 20 °C) than juveniles with strong fluctuations in the power-time curves. Fertile queens show a less pronounced heat production rate than virgin queens (54% at 30 °C, 87% at 25 °C and 77% at 20 °C). Calorimetric unrest is much higher for young than for adult queens. Heat production is very low in both uncapped and capped brood and less than 30% of that of a newly emerged worker. In most cases temperature showed a significant influence on the metabolic level, although its sign was not homogeneous between the castes or even within them. Locomotor activities are easily recorded by the acoustic frequency spectrum (0–7.5 kHz) and in good agreement with endoscopic observations and calorimetric traces.

Key words

Calorimetry Energy metabolism Honey bee castes Honey bees Apis mellifera carnica 



respiratory quotient


wet weight


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen MD (1959a) Respiration rates of worker honeybees of different ages and at different temperatures. J Exp Biol 36:92–101Google Scholar
  2. Allen MD (1959b) Respiration rates of larvae of drone and worker honey bees, Apis mellifera L. J Econ Entomol 52:399–402Google Scholar
  3. Armbruster L (1922) Über den Wärmehaushalt im Bienenvolk. Arch Bienenkd 4:268–270Google Scholar
  4. Bachem I, Lamprecht I (1983) The hill of the red wood ants Formica polyctena as a model of an ecological system. Zh Obshch Biol 44:114–123Google Scholar
  5. Bachem I, Lamprecht I, Schaarschmidt B (1980) Energetical investigations on the ecologic system: ant hill. In: Hemminger W, Wiedemann HG (eds) Thermal analysis. Birkhäuser, Basel, pp 571–575Google Scholar
  6. Blanke M, Lensing W (1989) Measurement of metabolic activity of the honeybee by assessing respiration. J Apic Res 28:131–135Google Scholar
  7. Cahill K, Lustick S (1976) Oxygen consumption and thermoregulation in Apis mellifera. Comp Biochem Physiol 55A:355–357Google Scholar
  8. Calvet E, Prat H (1956) Microcalorimetrie — applications physicochimiques et biologiques. Masson, ParisGoogle Scholar
  9. Chauvin R (1968) V. Energetique (calorimetrie) des abeilles, d'apres le travaux de M. Roth (1964–1965). In: Traite de biologie de l'abeille. vol 1: biologie et physiologie generales. Chauvin R (ed) Masson Paris, pp 245–261Google Scholar
  10. Coenen-Staß D, Schaarschmidt B, Lamprecht I (1980) Temperature distribution and calorimetric determination of heat production in the nest of the wood ant, Formica polyctena (Hymenoptera, Formicidiae). Ecology 61:238–244Google Scholar
  11. Esch H (1960) Über die Körpertemperaturen und den Wärmehaushalt von Apis mellifica. Z vgl Physiol 43:305–335Google Scholar
  12. Fahrenholz L, Lamprecht I, Schricker B (1989a) Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J Comp Physiol B 159:551–560Google Scholar
  13. Fahrenholz L, Lamprecht I, Schricker B (1989b) Microcalorimetric investigations of the energy metabolism of honeybee workers, Apis mellifera carnica. Thermochim Acta 151:13–21Google Scholar
  14. Farrar MD (1931) Metabolism of the adult honey bee. J Econ Entomol 24:611–616Google Scholar
  15. Feller P, Nachtigall W (1989) Flight of the honey bee. II. Inner and surface thorax temperatures and energetic criteria, correlated to flight parameters. J Comp Physiol B 158:719–727Google Scholar
  16. Free JB (1977) The organization and structure of the honeybee colony. Studies in biology, vol 81. Arnold, LondonGoogle Scholar
  17. Free JB, Simpson J (1963) The respiratory metabolism of honey-bee colonies at low temperatures. Entomol Exp Appl 6:234–238Google Scholar
  18. Free JB, Spencer-Booth Y (1958) Observations on the temperature regulation and food consumption of honeybees (Apis mellifera). J Exp Biol 35:930–937Google Scholar
  19. Free JB, Spencer-Booth Y (1959) Temperature regulation by honeybees. Bee World 40:173–177Google Scholar
  20. Free JB, Spencer-Booth Y (1962) The upper lethal temperatures of honeybees. Entomol Exp Appl 5:249–254Google Scholar
  21. Goller F, Esch HE (1988) Thermoregulation and oxygen consumption in workers and drones of Apis mellifera (poster). 10th Conf Eur Soc Comp Physiol Biochem, Innsbruck, AustriaGoogle Scholar
  22. Harrison JM (1987) Roles of individual honeybee workers and drones in colonial thermogenesis. J Exp Biol 129:53–61Google Scholar
  23. Heinrich B (1980) Mechanism of body-temperature regulation in honeybees, Apis mellifera. II. Regulation of thoraric temperature at high air temperatures. J Exp Biol 85:73–87Google Scholar
  24. Heinrich B (1981a) Energetics of honeybee swarm thermoregulation. Science 212:565–566Google Scholar
  25. Heinrich B (1981b) The regulation of temperature in the honeybee swarm. Sci Am 244:147–160Google Scholar
  26. Helversen O von (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–474Google Scholar
  27. Hemminger W, Höhne G (1984) Calorimetry-fundamentals and practice. Verlag Chemie, Weinheim, FRGGoogle Scholar
  28. Heran H, Crailsheim K (1988) Energy requirements of bees (Apis mellifera carnica Pollm.) in free flight, with and without additional load. In: Energy transformations in cells and animals, 10th Conf Eur Soc Comp Physiol Biochem, Innsbruck, Austria: 77Google Scholar
  29. Herman D, Lemasson M, Semaille R, Van Impe G (1982) Mesure de la consommation d'oxygene de l'abeille mellifere (Apis mellifica L.) par polarographie. Z Angew Entomol 93:284–291Google Scholar
  30. Heusner A, Roth M (1963) Consommation d'oxygene de l'Abeille a differentes temperatures. C R Acad Sci 256:284–285Google Scholar
  31. Heusner A, Stussi T (1964) Metabolism energetique de l'abeille isolee: son role dans la thermoregulation de la ruche. Insectes Soc 11:239–266Google Scholar
  32. Himmer A (1926) Der soziale Wärmehaushalt der Honigbiene. I. Die Wärme im nicht brütenden Wintervolk. Erlanger Jahrb Bienenkd 4:1–51Google Scholar
  33. Himmer A (1927) Der soziale Wärmehaushalt der Honigbiene. II. Die Wärme der Bienenbrut. Erlanger Jahrb Bienenkd 5:1–32Google Scholar
  34. Himmer A (1932) Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biol Rev 7:224–253Google Scholar
  35. Hocking B (1953) The intrinsic range and speed of flight of insects. Trans R Entomol Soc Lond 104:218–234Google Scholar
  36. Jay SC (1963) The development of honeybees in their cells. J Apic Res 2:117–134Google Scholar
  37. Jongbloed J, Wiersma CAG (1935) Der Stoffwechsel der Honigbiene während des Fliegens. Z Vgl Physiol 21:519–533Google Scholar
  38. Jungmann R, Rothe U, Nachtigall W (1989) Flight of the honey bee. I. Thorax surface temperature and thermoregulation during tethered flight. J Comp Physiol B 158:711–718Google Scholar
  39. Kosmin NP, Alpatov WW, Resnitschenko MS (1932) Zur Kenntnis des Gaswechsels und des Energieverbrauchs der Biene in Beziehung zu deren Aktivität. Z Vgl Physiol 17:408–422Google Scholar
  40. Kronenberg F (1979) Colonial thermoregulation in honey bees. Doctoral thesis, Stanford University, Stanford, CA, USAGoogle Scholar
  41. Kronenberg F, Heller HC (1982) Colonial thermoregulation in honey bees (Apis mellifera). J Comp Physiol 148:65–76Google Scholar
  42. Kühn A (1927) Über den Farbensinn der Bienen. Z Vgl Physiol 5:762–800Google Scholar
  43. Lamprecht I (1983) Application of calorimetry to different biological fields and comparison with other methods. Boll Soc Nat Napoli 92:515–542Google Scholar
  44. Lamprecht I, Becker W (1988) Combination of calorimetry and endoscopy for monitoring locomotor activities of small animals. Thermochim Acta 130:87–93Google Scholar
  45. Lemke M, Lamprecht I (1989) A model for heat production and thermoregulation in winter clusters of honey bees using differential heat conduction equations. J Theor Biol 142:261–273Google Scholar
  46. Lindauer M (1952) Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z Vgl Physiol 34:299–345Google Scholar
  47. Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z Vgl Physiol 36:391–432Google Scholar
  48. Lorenz RJ (1984) Grundbegriffe der Biometrie. Fischer, StuttgartGoogle Scholar
  49. May ML (1976) Warming rates as a function of body size in periodic endotherms. J Comp Physiol B 111:55–70Google Scholar
  50. McNeil DR (1977) Interactive data analysis. A practical primer. Wiley, New YorkGoogle Scholar
  51. Melampy RM, Willis ER (1939) Respiratory metabolism during larval and pupal development of the female honeybee (Apis mellifica L.). Physiol Zool 12:302–311Google Scholar
  52. Moffett JO, Lawson FA (1975) Effect of Nosema infection on O2 consumption by honey bees. J Econ Entomol 68:627–629Google Scholar
  53. Nachtigall W, Rothe U, Feller P, Jungmann R (1989) Flight of the honey bee. III. Flight metabolic power calculated from gas analysis, thermoregulation and fuel consumption. J Comp Physiol B 158:729–737Google Scholar
  54. Nagy KA, Stallone JN (1976) Temperature maintenance and CO2 concentration in a swarm cluster of honey bees, Apis mellifera. Comp Biochem Physiol 55A:169–171Google Scholar
  55. Omholt SW (1987a) Thermoregulation in the winter cluster of the honeybee, Apis mellifera. J Theor Biol 128:219–231Google Scholar
  56. Omholt SW (1987b) Why honeybees rear brood in winter. A theoretical study of the water conditions in the winter cluster of the honeybee, Apis mellifera. J Theor Biol 128:329–337Google Scholar
  57. Ritter W (1982) Experimenteller Beitrag zur Thermoregulation des Bienenvolkes (Apis mellifera L.) Apidologie 13:169–195Google Scholar
  58. Roth M (1964) Adaptation de la thermogenese a la temperature ambiante et effet d'economie thermique du groupe chez l'Abeille (Apis mellifica L.) C R Acad Sci Paris 258:5534–5537Google Scholar
  59. Roth M (1965) La production de chaleur chez Apis mellifera L. Ann Abeille 8:5–77Google Scholar
  60. Rothe U, Nachtigall W (1989) Flight of the honey bee. IV. Respiratory quotients and metabolic rates during sitting, walking and flying. J Comp Physiol B 158:739–749Google Scholar
  61. Schmaranzer S, Stabentheiner A (1988) Variability of the thermal behavior of honeybees on a feeding place. J Comp Physiol B 158:135–141Google Scholar
  62. Seeley TD (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293Google Scholar
  63. Shuel RW, Dixon SE (1959) Studies in the mode of action of royal jelly in honeybee development. II. Respiration of newly emerged larvae on various substrates. Can J Zool 37:803–813Google Scholar
  64. Simpson J (1961) Nest climate regulation in honey bee colonies. Science 133:1327–1333Google Scholar
  65. Southwick EE (1982) Metabolic energy of intact honey bee colonies. Comp Biochem Physiol 71A:277–281Google Scholar
  66. Southwick EE (1985) Allometric relations, metabolism and heat conductance in clusters of honey bees at cool temperatures. J Comp Physiol B 156:143–149Google Scholar
  67. Southwick EE, Mugaas J (1971) A hypothetical homeotherm: the honeybee hive. Comp Biochem Physiol 40 A:935–944Google Scholar
  68. Stussi TH (1972) L'heterothermie de l'abeille. Arch Sci Physiol 26:131–159Google Scholar
  69. Tauchert F (1929) Untersuchungen über Atmung und Wasserdampfabgabe bei Insekten. Z Biol (München) 88:377–381Google Scholar
  70. Tauchert F (1930) Weitere Stoffwechseluntersuchungen an Insekten. Z Biol (München) 89:541–546Google Scholar
  71. Withers PC (1981) The effects of ambient air pressure on oxygen consumption of resting and hovering honeybees. J Comp Physiol B 141:433–437Google Scholar
  72. Woodworth CE (1932) Some effects of reduced atmospheric pressure upon honeybee respiration. J Econ Entomol 25:1036–1042Google Scholar
  73. Worswick PVW (1987) Comparative study of colony thermoregulation in the African honeybee, Apis mellifera adansonii Latreille and the Cape honeybee, Apis mellifera capensis Escholtz. Comp Biochem Physiol 86A:95–102Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • L. Fahrenholz
    • 1
  • I. Lamprecht
    • 2
  • B. Schricker
    • 1
  1. 1.Institut für Allgemeine ZoologieFreie Universität BerlinBerlin 33Germany
  2. 2.Institut für BiophysikFreie Universität BerlinBerlin 33Germany

Personalised recommendations