Letters in Mathematical Physics

, Volume 10, Issue 2–3, pp 179–182 | Cite as

Integrable optical geometry

  • Ivor Robinson
  • Andrzej Trautman


It is shown that a Lorentzian 4-manifold admitting a congruence of optical (null) geodesics without shear and twist defines an optical geometry which is integrable (locally flat) in the sense of the theory of G-structures. The existence of a symmetric linear connection compatible with the optical geometry is another condition equivalent to the integrability of the optical G-structure.


Statistical Physic Group Theory Linear Connection Optical Geometry Symmetric Linear Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BatemanH., ‘The Transformation of Coordinates which can be used to Transform One Physical Problem into Another’, Proc. Lond. Math. Soc. 8, 469–488 (1910).Google Scholar
  2. 2.
    RobinsonI., ‘Null Electromagnetic Fields’, J. Math. Phys. 2, 290–291 (1959).Google Scholar
  3. 3.
    KramerD. et al., Exact Solutions of Einstein's Field Equations, VEB Deutscher-Verlag der Wissenschaften, Berlin, 1980.Google Scholar
  4. 4.
    Trautman, A., ‘Deformations of the Hodge Map and Optical Geometry, J. Geom. Phys. (in print).Google Scholar
  5. 5.
    CartanE., ‘Sur les espaces conformes généralisés et l'Univers optique’, Comptes Rend. Acad. Sci. (Paris) 174, 857–859 (1992).Google Scholar
  6. 6.
    Trautman, A., ‘Optical Structures in Relativistic Theories’, Astérisque (in print).Google Scholar
  7. 7.
    Robinson, I. and Trautman, A., ‘Optical Geometry’ (in preparation).Google Scholar
  8. 8.
    ChernS. S., ‘The Geometry of G-structures’, Bull. Amer. Math. Soc. 72, 167–219 (1966).Google Scholar
  9. 9.
    RobinsonI. and TrautmanA., ‘Conformal Geometry of Flows in n Dimensions’, J. Math. Phys. 24, 1425–1429 (1983).Google Scholar
  10. 10.
    SternbergS., Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1964, p. 315; Dieudonné, J., Éléments d'analyse, vol. 4, Gauthier-Villars, Paris, 1971, §20.7, prob. 7.Google Scholar
  11. 11.
    KobayashiS., Transformation Groups in Differential Geometry Springer-Verlag, Berlin, 1972.Google Scholar
  12. 12.
    RobinsonI. and TrautmanA., ‘Spherical Gravitational Waves in General Relativity’, Proc. Roy. Soc. (London) A265, 463–473 (1962).Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • Ivor Robinson
    • 1
  • Andrzej Trautman
    • 1
  1. 1.Scuola Internazionale Superiore di Studi AvanzatiTriesteItaly

Personalised recommendations