Planta

, Volume 165, Issue 4, pp 502–506 | Cite as

Diurnal and circadian rhythmicity in the expression of light-induced plant nuclear messenger RNAs

  • K. Kloppstech
Article

Abstract

The levels of nuclear mRNAs for three light-inducible proteins (light-harvesting chlorophyll a/b protein, small subunit of ribulose-1,5-bisphosphate carboxylase and early light-induced protein) have been analyzed under light-dark and constant light conditions. The levels of all three mRNAs have been found to vary considerably during the day, both under ligh-dark and under constant light conditions, demonstrating the existence of diurnal and circadian rhythmicity in the expressionoof these nuclear-coded plant proteins. The levels of two of these mRNAs have been found to be enhanced 2 h before the beginning of illumination when active phytochrome levels are still low.

Key words

Circadian rhythmicity Light and mRNA Pisum (mRNA and light) Rhythm (circadian) Translation (light-induced mRNA) 

Abbreviations

ELIP

early light-inducible protein

LHCP

light-harvesting chlorophyll alb protein; poly(A)RNA=polyadenylated RNA

(ss)RuBPCase

(small subunit) ribulose-1,5-bisphosphate carboxylase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel, K. (1979) Phytochrome-induced appearance of mRNA activities for the apoprotein of the light harvesting chlorophyll a/b protein of barley (Hordeum vulgare). Eur. J. Biochem. 97, 183–188Google Scholar
  2. Apel, K. (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare). Phytochrome induced decrease of translatable mRNA coding for the NADPH: protochlorophyllide oxidoreductase. Eur. J. Biochem. 120, 89–93Google Scholar
  3. Apel, K., Kloppstech, K. (1978) The plastic membranes of barley (Hordeum vulgare). Light-induced appearance of the mRNA for the apoprotein of the light-harvesting chlorophyll a/b protein. Eur. J. Biochem. 85, 581–588Google Scholar
  4. Bonner, W.M., Laskey, R.A. (1974) A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 46, 83–88Google Scholar
  5. de Vries S.C., Harmsen, M.C., Kniper, M.T.R., Dons, H.J.M., Wessels, J.H.G. (1983) Molecular cloning of pea mRNAs encoding a shoot specific polypeptide and light-induced polypeptides. Plant Mol. Biol. 2, 295–303Google Scholar
  6. Ehret, C.F., Trucco, E. (1967) Molecular models for the cireadian clock. I. The chronon concept. J. Theor. Biol. 15, 240–262Google Scholar
  7. Katz, L., Kingsbury, D.T., Helinski, D.R. (1973) Stimulation by cyclic adenosine monophosphate of plasmid deoxyribonucleic acids in polyacrylamide gels. J. Bacteriol. 114, 577–591Google Scholar
  8. Kloppstech, K., Meyer, G., Bartsch, K., Hundrieser, J., Link, G. (1984) Control of chloroplast gene expression during the early phase of chloroplast development. In: Compartments in algal cells and their interaction, pp. 36–46, Wiessner, W., Robinson, D.G., Starr, R.C., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. Lodish, H.F. (1976) Translational control of protein synthesis. Annu. Rev. Biochem. 45, 39–79Google Scholar
  10. Meyer, G., Kloppstech, K. (1984) A rapidly light-induced chloroplast protein with a high turnover coded for by pea nuclear DNA. Eur. J. Biochem. 138, 201–207Google Scholar
  11. Neville, O.M. (1971) Molecular weight determination of protein-dodecyl-sulfate complexes by gel electrophoresis in a discontinuous buffer system. J. Biol. Chem. 246, 6328–6334Google Scholar
  12. Rigby, R.W., Dieckmann, M., Rhodes, C., Berg, P. (1977) Labelling deoxyribonucleic acid to high specific activity in vitro by nick-translation with DNA polymerase. J. Mol. Biol. 113, 237–251Google Scholar
  13. Roberts, B.W., Patterson, B.M. (1970) Efficient translation of tobacco mosaic virus RNA and globin 9S RNA in a cell-free system from commercial wheat germ. Proc. Natl. Acad. Sci. USA 70, 2330–2334Google Scholar
  14. Tobin, E.M., Suttie, J.L. (1980) Light effects on the synthesis of ribulose-1,5-bisphosphate carboxylase in Lemma gibba. Plant Physiol. 65, 641–647Google Scholar
  15. Scharnhorst, C., Heinze, H., Meyer, G., Kolanus, W., Bartsch, K., Heinrichs, S., Gudschun, T., Möller, M., Herzfeld, F. (1984) Molecular cloning of a pea mRNA encoding an early light induced, nuclear coded chloroplast protein. Plant Mol. Biol., 4, 241–245Google Scholar
  16. Schweiger, H.G., (1969) Cell biology of Acetabularia. Curr. Top. Microbiol. Immunol. 50, 1–36Google Scholar
  17. Steinback, K.E., Pfister, K., Artzen, Ch.J. (1981) Trypsin-mediated removal of herbicide binding sites within the photosystem II complex. Z. Naturforsch. Teil C 36, 98–108Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • K. Kloppstech
    • 1
  1. 1.Institut für BotanikUniversität HannoverHannover 21Federal Republic of Germany

Personalised recommendations