, Volume 107, Issue 1, pp 1–32 | Cite as

Sporopollenin in the cell wall of Chlorella and other algae: Ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures

  • A. W. AtkinsonJr.
  • B. E. S. Gunning
  • P. C. L. John


Cells of Chlorella fusca var. vacuolata (Cambridge 211/8p) resisted efforts aimed at producing naked protoplasts by enzymatic degradation of the cell wall, and a study of the development and composition of the wall was therefore undertaken.
  1. 1.

    After cytokinesis has produced naked autospores within the mother cell wall, cell wall formation commences outside the autospore plasma membrane with the appearance of small trilaminar plaques. These enlarge while inter-autospore granular material diminishes in quantity, and they eventually fuse to produce a complete trilaminar sheath around each autospore.

  2. 2.

    A microfibrillar, cellulase digestible, layer is deposited between the trilaminar component and the plasma membrane. Meanwhile the corresponding microfibrillar component of the mother cell wall is digested leaving only its resistant trilaminar component.

  3. 3.

    The trilaminar component includes a substance considered to be the polymerized carotenoid, sporopollenin, on the basis of its resistance to extreme extraction procedures including acetolysis, and its infra red absorption spectrum.

  4. 4.

    Two phases of sporopollenin biosynthesis were detected by means of pulse and pulse-chase treatments with 14C-acetate at intervals during the cell cycle in synchronous cultures. One coincides with the formation of the sporopollenin-containing trilaminar wall component, and the other is 6–8 hours earlier while the cells are in karyokinesis. The former yields labelled sporopollenin directly and the latter probably represents formation of a precursor.

  5. 5.

    Of five other strains of Chlorella tested, only one possesses sporopollenin, and so does one Scenedesmus and two out of three strains of Prototheca.

  6. 6.

    Examination of the wall structure of the above algae suggest a relationship between the presence of sporopollenin and the development of an outer, trilaminar wall component.

  7. 7.

    A survey of the literature gives support to this hypothesis and further suggests that the ability to synthesise sporopollenin is related to the ability to produce secondary carotenoids.

  8. 8.

    The significance of the findings is discussed.



Enzymatic Degradation Cellulase Carotenoid Chlorella Granular Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, A. W., Jr., Gunning, B. E. S., John, P. C. L., McCullough, W.: Centrioles and microtubules in Chlorella. Nature New Biol. 234, 24–25 (1971).Google Scholar
  2. Bendix, S., Allen, M. B.: Ultra-violet induced mutants of Chlorella pyrenoidosa. Arch. Mikrobiol. 41, 115–141 (1962).Google Scholar
  3. Bisalputra, T.: The origin of the peptic layer of the cell wall of Scenedesmus quadricauda. Canad. J. Bot. 43, 1549–1552 (1965).Google Scholar
  4. Bisalputra, T., Ashton, F. M., Weier, T. E.: Role of dictyosomes in wall formation during cell division of Chlorella vulgaris. Amer. J. Bot. 53, 213–216 (1966).Google Scholar
  5. Bisalputra, T., Weier, T. E.: The cell wall of Scenedesmus quadricauda. Amer. J. Bot. 50, 1011–1019 (1963).Google Scholar
  6. Bisalputra, T., Weier, T. E., Risley, E. B., Engelbrecht, A. H. P.: The pectic layer of the cell wall of Scenedesmus quadricauda. Amer. J. Bot. 51, 548–551 (1964).Google Scholar
  7. Bowen, W. R.: Ultrastructural aspects of the cell boundary of Haematococcus pluvialis. Trans. Amer. microscop. Soc. 86, 36–43 (1967).Google Scholar
  8. Brooks, J.: Some chemical and geochemical studies on sporopollenin. In: Sporopollenin (J. Brooks, P. R. Grant, M. Muir, P. van Gijzel, and G. Shaw, eds.), p. 351–407. London: Acad. Press 1971.Google Scholar
  9. Brooks, J., Shaw, G.: Recent developments in the chemistry, biochemistry, geochemistry and post-tetrad ontogeny of sporopollenins derived from pollen and spore exines. In: Pollen: Development and physiology (J. Heslop-Harrison, ed.), p. 99–114. London: Butterworths 1971.Google Scholar
  10. Budd, T. W., Tjostem, J. L., Duysen, M. E.: Ultrastructure of Chlorella pyrenoidosa as affected by environmental changes. Amer. J. Bot. 56, 540–545 (1969).Google Scholar
  11. Burzyk, J., Grzybek, H., Banaś, J., Banaś, E.: Studies on the ultrastructure of the cell walls of Scenedesmus 1. Acta med. pol. 12, 143–146 (1971).Google Scholar
  12. Burczyk, J., Grzybek, H., Banaś, J., Banaś, E.: Presence of cellulase in the alga Scenedesmus. Exp. Cell Res. 63, 451–453 (1971).Google Scholar
  13. Callely, A. G., Lloyd, D.: The metabolism of acetate in the colourless alga Prototheca zopfii. Biochem. J. 90, 483–489 (1964).Google Scholar
  14. Chaloner, W. G., Orbell, G.: A palaeobotanical definition of sporopollenin. In: Sporopollenin (J. Brooks, P. R. Grant, M. Muir, P. van Gijzel and G. Shaw, eds.), p. 273–294. London: Acad. Press 1971.Google Scholar
  15. Claes, H.: Analyse der biochemischen Synthesekette für Carotinoide mit Hilfe von Chlorella-Mutanten. Z. Naturforsch. 9b, 461–470 (1954).Google Scholar
  16. Claes, H.: Action spectrum of light-dependent carotenoid synthesis in Chlorella vulgaris. In: Biochemistry of chloroplasts (T. W. Goodwin, ed.), vol 2, p. 441–444 London: Acad. Press 1967.Google Scholar
  17. Cocking, E. C.: Virus uptake, cell wall regeneration, and virus multiplication in isolated plant protoplasts. Int. Rev. Cytol. 28, 89–124 (1970).Google Scholar
  18. Czygan, F.-C.: Sekundär-Carotinoide in Grünalgen. 1. Chemie, Vorkommen und Faktoren, welche die Bildung dieser Polyene beeinflussen. Arch. Mikrobiol. 61, 81–102 (1968).Google Scholar
  19. Deason, T. R., Darden, W. H., Jr., Ely, S.: The development of sperm packets of the M5 strain of Volvox aureus. J. Ultrastruct. Res. 26, 85–94 (1969).Google Scholar
  20. Dickinson, H. G.: The role played by sporopollenin in the development of pollen in Pinus banksiana. In: Sporopollenin (J. Brooks, P. R. Grant, M. Muir, P. van Gijzel and G. Shaw, eds.), p. 31–67. London: Acad. Press 1971.Google Scholar
  21. Dickinson, H. G., Heslop-Harrsion, J.: The mode of growth of the inner layer of the pollen-grain exine in Lilium. Cytobios 4, 233–243 (1971).Google Scholar
  22. Eberhardt, U.: The cell wall as the site of carotenoid in the “Knallgas” bacterium. Arch. Mikrobiol. 80, 32–37 (1971).Google Scholar
  23. Faegri, K., Iversen, J.: Textbook of pollen analysis. Copenhagen: Munksgaard 1964.Google Scholar
  24. Gawlik, S. R., Millington, W. F.: Pattern formation and the fine structure of the developing cell wall in colonies of Pediastrum boryanum. Amer. J. Bot. 56, 1084–1093 (1969).Google Scholar
  25. Gergis, M. S.: A colourless Chlorella mutant containing thylakoids. Arch. Mikrobiol. 68, 187–190 (1969).Google Scholar
  26. Gergis, M. S.: The presence of microbodies in three strains of Chlorella. Planta (Berl.) 101, 180–184 (1971).Google Scholar
  27. Gooday, G. W.: A biochemical and autoradiographic study of the role of the Golgi bodies in thecal formation in Platymonas tetrahele. J. exp. Bot. 22, 959–971 (1971).Google Scholar
  28. Goulding, K. H., Merrett, M. J.: The photometabolism of acetate by Chlorella pyrenoidosa. J. exp. Bot. 17, 678–689 (1966).Google Scholar
  29. Griffiths, D.A., Griffiths, D. J.: The fine structure of autotrophic and heterotrophic cells of Chlorella vulgaris (Emerson strain). Pl. Cell Physiol. 10, 11–19 (1969).Google Scholar
  30. Hanic, L. A., Craigie, J. S.: Studies on the algal cuticle. J. Physiol. 5, 89–102 (1969).Google Scholar
  31. Hawkins, A. F., Leedale, G. F.: Zoospore structure and colony formation in Pediastrum spp. and Hydrodictyon reticulatum (L.) Lagerheim. Ann. Bot. 35, 201–211 (1971).Google Scholar
  32. Heslop-Harrison, J.: The pollen wall: structure and development. In: Pollen: Development and physiology (J. Heslop-Harrison, ed.), p. 75–98. London: Butterworths 1971.Google Scholar
  33. Horner, H. J., Lersten, N. R., Bowen, C. C.: Spore development in the liverwort Riccardia pinguis. Amer. J. Bot. 53, 1048–1064 (1966).Google Scholar
  34. Karakashian, S. J.: Morphological plasticity and the evolution of algal symbionts. Ann. N.Y. Acad. Sci. 175, 474–487 (1970).Google Scholar
  35. Karakashian, S. J., Karakashian, M. W., Rudzinska, M.: Electron microscopic observations on the symbiosis of Paramecium bursaria and its intracellular algae. J. Protozool. 15, 113–128 (1968).Google Scholar
  36. Kessler, E., Langner, W., Ludewig, I., Wiechmann, H.: Bildung von Sekundär-Carotinoiden bei Stickstoffmangel und Hydrogenase-Aktivität als taxonomische Merkmale in der Gattung Chlorella. In: Studies on microalgae and photosynthetic bacteria (Japan Soc. Plant Physiol., eds.), p. 7–20. Tokyo: Univ. of Tokyo Press 1963.Google Scholar
  37. Kochert, G., Olson, L. W.: Ultrastructure of Volvox Carteri 1. The asexual colony. Arch. Mikrobiol. 74, 19–30 (1970).Google Scholar
  38. Lang, N. J.: Electron microscopy of the Volvocaceae and Astrephomenaceae. Amer. J. Bot. 50, 280–300 (1963).Google Scholar
  39. Lang, N. J.: Electron microscopic studies of extraplastidic astaxanthin in Haematococcus. J. Phycol. 4, 12–19 (1968).Google Scholar
  40. Lewin, R. A.: The cell wall of Platymonas. J. gen. Microbiol. 19, 87–90 (1958).Google Scholar
  41. Lloyd, D., Turner, G.: The cell wall of Prototheca zopfii. J. gen. Microbiol. 50, 421–427 (1968).Google Scholar
  42. Lorenzen, H.: Synchrone Zellteilungen von Chlorella bei verschiedenen Licht-Dunkel-Wechseln. Flora (Jena) 144, 473–496 (1957).Google Scholar
  43. Manton, I., Parke, M.: Observations on the fine structure of two species of Platymonas with special reference to flagellar scales and the mode of origin of the theca. J. marine biol. Ass. 45, 743–754 (1965).Google Scholar
  44. Marchant, H. J., Pickett-Heaps, J. D.: Ultrastructure and differentiation of Hydrodictyon reticulatum. II. Formation of zooids within the coenobium. Aust. J. biol. Sci. 24, 471–486 (1971).Google Scholar
  45. Mayer, F., Czygan, F. C.: Änderungen der Ultrastrukturen in den Grünalgen Ankistrodesmus braunii und Chlorella fusca var. rubescens bei Stickstoffmangel. Planta (Berl.) 86, 175–185 (1969).Google Scholar
  46. McCullough, W., John, P. C. L.: Temporal control of the de novo synthesis of isocitrate lyase during the cell cycle of the eucaryote Chlorella pyrenoidosa. Biochim. biophys. Acta (Amst.) 269, 287–296 (1972).Google Scholar
  47. McLean, R. J.: Primary and secondary carotenoids of Spongiochloris typica. Physiol. Plantarum (Cbh.) 20, 41–47 (1967).Google Scholar
  48. McLean, R. J.: Ultrastructure of Spongiochloris typica during senescence. J. Phycol. 4, 277–283 (1968).Google Scholar
  49. Menke, W., Fricke, B.: Einige Beobachtungen an Prototheca ciferrii. Port. Acta biol. A 6, 243–252 (1962).Google Scholar
  50. Merrett, M. J., Goulding, K. H.: Short-term products of 14C-acetate assimilation by Chlorella pyrenoidosa in the light. J. exp. Bot. 18, 128–139 (1967).Google Scholar
  51. Millington, W. F., Gawlik, S. R.: Silica in the wall of Pediastrum. Nature (Lond.) 216, 68 (1967).Google Scholar
  52. Millington, W. F., Gawlik, S. R.: Ultrastructure and initiation of wall pattern in Pediastrum boryanum. Amer. J. Bot. 57, 552–561 (1970).Google Scholar
  53. Mollenhauer, H. H.: Plastic embedding mixtures for use in electron microscopy. Stain Technol. 39, 111–114 (1964).Google Scholar
  54. Mühlethaler, K.: Ultrastructure and formation of plant cell walls. Ann. Rev. Plant Physiol. 18, 1–24 (1967).Google Scholar
  55. Northcote, D. H., Goulding, K. J., Horne, R. W.: The chemical composition and structure of the cell wall of Chlorella pyrenoidosa. Biochem. J. 70, 391–397 (1958).Google Scholar
  56. O'Brien, T.P.: Further observations on hydrolysis of the cell wall in the xylem. Protoplasma (Wien) 69, 1–14 (1970).Google Scholar
  57. Parke, M., Manton, I.: Preliminary observations on the fine structure of Prasinocladus marinus. J. marine biol. Ass. 45, 525–536 (1965).Google Scholar
  58. Pearsall, W. H., Loose, L.: The growth of Chlorella vulgaris in pure culture. Proc. roy. Soc. B 121, 451–501 (1937).Google Scholar
  59. Pickett-Heaps, J. D.: Some ultrastructural features of Volvox, with particular reference to the phenomenon of inversion. Planta (Berl.) 90, 174–190 (1970a).Google Scholar
  60. Pickett-Heaps, J. D.: Mitosis and autospore formation in the green alga Kirchneriella lunaris. Protoplasma (Wien) 70, 325–347 (1970b).Google Scholar
  61. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).Google Scholar
  62. Rodriguéz-López, M.: Morphological and structural changes produced in Chlorella pyrenoidosa by assimilable sugars. Arch. Mikrobiol. 52, 319–324 (1965).Google Scholar
  63. Rowley, J. R., Flynn, J. J.: Single-stage carbon replicas of microspores. Stain Technol. 41, 287–290 (1966).Google Scholar
  64. Rowley, J. R., Southworth, D.: Deposition of sporopollenin on lamellae of unit membrane dimensions. Nature (Lond.) 213, 703–704 (1967).Google Scholar
  65. Schnepf, E., Hegewald, E., Soeder, C. J.: Elektronenmikroskopische Beobachtungen an Parasiten aus Scenedesmus-Massenkulturen. 2.. Arch. Mikrobiol. 75, 209–229 (1971a).Google Scholar
  66. Schnepf, E., Deichgräber, G., Hegewald, E., Soeder, C.-J.: Elektronenmikroskopische Beobachtungen an Parasiten aus Scenedesmus-Massenkulturen. 3. Arch. Mikrobiol. 75, 230–245 (1971b)Google Scholar
  67. Schwimmer, D., Schwimmer, M.: Algae and medicine In: Algae and man (D. F. Jackson, ed.), p. 368–412. New York: Plenum Press 1964.Google Scholar
  68. Sharman, B. C.: Volvox colonies and snail cytase. Nature (Lond.) 186, 90 (1960).Google Scholar
  69. Shaw, G.: Sporopollenin. In: Phytochemical phylogeny (J. B. Harborne, ed.), p. 31–58. London: Acad. Press 1970.Google Scholar
  70. Shaw, G.: The chemistry of sporopollenin. In: Sporopollenin (J. Brooks, P. R. Grant, M. Muir, P. van Gjizel and G. Shaw, eds.), p. 305–350, London: Acad. Press 1971.Google Scholar
  71. Shaw, G., Yeadon, A.: Chemical studies on the constitution of some pollen and spore membranes. J. chem. Soc. (C) 16-22 (1966).Google Scholar
  72. Soeder, C. J.: Elektronenmikroskopische Untersuchungen an ungeteilten Zellen von Chlorella fusca Shihira et Krauss. Arch. Mikrobiol. 47, 311–324 (1964).Google Scholar
  73. Soeder, C. J.: Elektronenmikroskopische Untersuchung der Protoplastenteilung bei Chlorella fusca Shihira et Krauss. Arch. Mikrobiol. 50, 368–377 (1965).Google Scholar
  74. Southworth, D.: Incorporation of radioactive precursors into developing pollen walls. In: Pollen: Development and physiology (J. Heslop-Harrison, ed.), p. 115–120. London: Butterworths 1971.Google Scholar
  75. Southworth, D., Branton, D.: Freeze-etched pollen walls of Artemisia pycnocephala and Lilium humboldtii. J. Cell Sci. 9, 193–207 (1971).Google Scholar
  76. Spurr, A. J.: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–49 (1969).Google Scholar
  77. Staehelin, A.: Die Ultrastruktur der Zellwand und des Chloroplasten von Chlorella. Z. Zellforsch. 74, 325–350 (1966).Google Scholar
  78. Sutton, J. S.: Potassium permanganate staining of ultra-thin sections for electron microscopy. J. Ultrastruct. Res. 21, 424–429 (1968).Google Scholar
  79. Swift, E., Remsen, C. C.: The cell wall of Pyrocystis spp. (Dinococcales). J. Phycol. 6, 79–86 (1970).Google Scholar
  80. Syrett, P. J.: The kinetics of isocitrate lyase formation in Chlorella: evidence for the promotion of enzyme synthesis by photophosphorylation. J. exp. Bot. 53, 641–654 (1966).Google Scholar
  81. Syrett, P. J., Bocks, S. M., Merrett, M. J.: The assimilation of acetate by Chlorella vulgaris. J. exp. Bot. 15, 35–47 (1964).Google Scholar
  82. Wanka, F.: Ultrastructural changes during normal and colchicine-inhibited cell division of Chlorella. Protoplasma (Wien) 66, 105–130 (1968).Google Scholar
  83. Waterkeyn, L., Bienfait, A.: Primuline induced fluorescence of the first exine elements and Ubisch bodies in Ipomoea and Lilium. In: Sporopollenin (J. Brooks, P. R. Grant, M. Muir, P. van Gijzel and G. Shaw, eds.), p. 108–129. London: Acad. Press 1971.Google Scholar
  84. Zetsche, F., Vicari, H.: Untersuchungen über die Membran der Sporen und Pollen II. Lycopodium clavatum L. 2. Helv. chim. Acta 14, 58–62 (1931a).Google Scholar
  85. Zetsche, F., Vicari, H.: Untersuchungen über die Membran der Sporen und Pollen. III. 2. Picea orientalis, Pinus sylvestris L., Corylus avellana L. Helv. chim. Acta 14, 62–67 (1931b).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • A. W. AtkinsonJr.
    • 1
  • B. E. S. Gunning
    • 1
  • P. C. L. John
    • 1
  1. 1.Department of BotanyQueens's University of BelfastN. Ireland

Personalised recommendations