Marine Biology

, Volume 96, Issue 4, pp 539–544

Chemical defense and aposematic coloration in larvae of the ascidian Ecteinascidia turbinata

  • C. M. Young
  • B. L. Bingham


In the coastal waters of Florida (USA) tadpole larvae of the colonial ascidian Ecteinascidia turbinata contain chemicals which make them unpalatable to planktivorous juvenile pinfish Lagodon rhomboides. Experiments demonstrate that the bright organe color of E. turbinata tadpoles is aposematic. Fish that have recently tasted larvae of E. turbinata will not attack the palatable tadpoles of Clavelina oblonga when the latter are dyed organe to resemble larvae of E. turbinata. Tadpoles of E. turbinata that have been mouthed and rejected by fish generally survive to complete a normal metamorphosis. Individual selection explains the evolution of aposematic coloration in E. turbinata better than kin selection. The identity of the defensive chemical is unknown. The unpalatable substance in larvae of E. turbinata is removed by dialysis, indicating that it has a molecular weight less than 14000 d. Larvae are not acidic, nor is the active substance denatured by doiling.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Benson, W. W.: Natural selection for Mullerian mimicry in Heliconius erato in Costa Rica. Science, Wash. D.C. 176, 936–939 (1972)Google Scholar
  2. Bingham, B. L. and L. F. Braithwaite: Defense adaptations of the dendrochirote holothurian Psolus chitonoides Clark. J. exp. mar. Biol. Ecol. 98, 311–322 (1986)Google Scholar
  3. Brodie, E. D. Jr. and R. R. Howard: Experimental study of Batesian mimicry in the salamanders Plethodon jordani and Desmognathus ochrophaeus. Am. Midl. Nat. 90, 38–46 (1973)Google Scholar
  4. Brower, L. P., L. M. Cook and H. J. Croze: Predator responses to artificial batesian mimics released in a neotropical environment. Evolution 21 11–23 (1967)Google Scholar
  5. Coppinger, R. P.: The effect of experience and novelty on avian feeding behavior with reference to the evolution of warning coloration in butterflies. II. Reactions of naive birds to novel insects. Am. Nat. 104, 323–335 (1970)Google Scholar
  6. Cott, H. B.: Adaptive coloration in animals, 508 pp. London: Methuen 1957Google Scholar
  7. Edmunds, M.: Defense in animals. A survey of antipredator defences, 357 pp. London: Longmans and Harlow 1974Google Scholar
  8. Emery, A. R.: Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull. mar. Sci. 23, 649–770 (1973)Google Scholar
  9. Fisher, R. A.: The genetical theory of natural selection, 272 pp. Oxford: Clarendon 1930Google Scholar
  10. Garten, R. P. H.: PIXE: possibilities in elemental micro-and trace-analysis. TRAC, Trends Anal. Chem. 3, 152–157 (1984)Google Scholar
  11. Harvey, P. H. and P. J. Greenwood: Anti-predator defence strategies: some evolutionary problems, pp 129–151 In: Behavioural ecology: an evolutionary approach, Ed. by J. R. Krebs and N. B. Davies. Oxford: Blackwell 1978Google Scholar
  12. Harvey, P. H. and R. J. Paxton: The evolution of aposematic coloration. Oikos 37, 391–393 (1981)Google Scholar
  13. Hensel, J. L. Jr. and E. D. Brodie, Jr.: An experimental study of aposematic coloration in the salamander Plethodon jordani. Copeia 1976 (1), 59–65 (1976)Google Scholar
  14. Jarvi, T., B. Sillén-Tullberg and C. Wiklund: Individual versus kin selection for aposematic coloration: a reply to Harvey and Paxton. Oikos 37, 393–395 (1981)Google Scholar
  15. Jeffords, M. R., G. P. Waldbauer and J. G. Sternberg: Determination of the time of day at which diurnal moths painted to resemble butterflies are attacked by birds. Evolution 34, 1205–1211 (1980)Google Scholar
  16. Kjelson, M. A., D. S. Peters, G. W. Thayer and G. N. Johnson: The general feeding ecology of postlarval fishes in the Newport River Estuary. U.S. Fish Wildl. Serv. Fish. Bull. 73, 137–144 (1975)Google Scholar
  17. Lichter, W., D. M. Lopez, L. L. Wellham and M. M. Sigel: Ecteinascidia turbinata extracts inhibit DNA synthesis in lymphocytes after mitogenic stimulation by lectins. Proc. Soc. exp. Biol. Med. 150, 475–478 (1975)Google Scholar
  18. Lichter, W., M. M. Sigel, D. M. Lopez and L. L. Wellham: Inhibition of DNA synthesis by Ecteinascidia turbinata extracts (ETE), pp 395–401. In: Food-drugs from the sea. Ed. by H. H. Webber and G. D. Ruggieri. Washington, D. C.: Marine Technology Society (1976)Google Scholar
  19. Livingston, R. J.: Trophic responses of fishes to habitat variability in coastal seagrass systems. Ecology 65, 1258–1275 (1984)Google Scholar
  20. Lucas, J. S., R. J. Hart, M. E. Howden, and R. Salathe: Saponins in eggs and larvae of Acanthaster planci (Asteroidea) as chemical defenses against planktivorous fish. J. exp. mar. Biol. Ecol. 40, 155–165 (1979)Google Scholar
  21. Lyerla, T. A., J. H. Lyerla and M. Fisher: Pigmentation in the orange tunicate, Ecteinascidia turbinata. Biol. Bull. mar. biol. Lab., Woods Hole 149, 178–185 (1975)Google Scholar
  22. Olson, R. A.: Ascidian-Prochloron symbiosis: the role of larval photoadaptations in midday larval release and settlement. Biol. Bull. mar. biol. Lab., Woods Hole 165, 221–240 (1983)Google Scholar
  23. Olson, R. A.: Potential versus realized larval dispersal: fish predation on larvae of the ascidian Lissoclinum patella (Gottscheldt). J. exp. mar. Biol. Ecol. 110, 245–256 (1987)Google Scholar
  24. Sigel, M. M., L. J. McCumber, J. A. Hightower, S. S. Hayasaka, E. M. Huggins, Jr. and J. F. Davis: Ecteinascidia turbinata extract activates components of inflammatory responses throughout the phylogenetic spectrum. Am. Zool. 23, 221–227 (1983)Google Scholar
  25. Sillén-Tullberg, B. and E. H. Bryant The evolution of aposematic coloration in distasteful prey: an individual selection model. Evolution 37, 993–1000 (1983)Google Scholar
  26. Sternburg, J. G., G. P. Waldbauer and M. R. Jeffords: Batesian mimicry: selective advantage of color pattern. Science, Wash. D.C. 195, 681–683 (1977)Google Scholar
  27. Stoecker, D.: Relationship between chemical defense and ecology in benthic ascidians. Mar. Ecol. Prog. Ser. 3, 257–265 (1980a)Google Scholar
  28. Stoecker, D.: Chemical defenses of ascidians against predators. Ecology 61, 1327–1334 (1980b)Google Scholar
  29. Stoner, A. W. and R. J. Livingston: Ontogenetic patterns in diet and feeding morphology in sympatric sparid fishes from seagrass meadows. Copeia 1984 (1), 174–187 (1984)Google Scholar
  30. Thayer, G. W., D. E. Hoss, M. A. Kjelson, W. F. Hettler, Jr. and M. W. Lacroix: Biomass of zooplankton in the Newport River Estuary and the influence of postlarval fishes. Chesapeake Sci. 15, 9–16 (1974)Google Scholar
  31. Thorson, G.: Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950)Google Scholar
  32. Thorson, G.: Some factors influencing the recruitment and establishment of marine benthic communities. Neth. J. Sea Res. 3, 267–293 (1966)Google Scholar
  33. Turner, J. R. G.: Butterfly mimicry: the genetical evolution of an adaptation, pp 163–206. In: Evolutionary biology, Vol. 10. Ed. by M. K. Hecht, W. C. Steere and B. Wallace. New York: Plenum 1977Google Scholar
  34. Young, C. M. and F. S. Chia: Abundance and distribution of pelagic larvae as influenced by predation, behavior, and hydrographic factors. In: Reproduction of marine invertebrates, Vol. 9. Ed. by A. C. Giese and J. S. Pearse. Oxford: Blackwell (In press)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • C. M. Young
    • 1
    • 2
  • B. L. Bingham
    • 1
    • 2
  1. 1.Department of Larval EcologyHarbor Branch Oceanographic InstitutionFt. PierceUSA
  2. 2.Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations