Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Polarity in mechanoreceptor cells of trigger hairs of Dionaea muscipula Ellis

  • 141 Accesses

  • 18 Citations


Both the apical and the basal cell poles of the sensory cells in trigger hairs of Dionaea muscipula are structured identically. A complex of concentrically arranged endoplasmic reticulum cisternae occupies each of the poles. One to four vacuoles are enclosed within the central cisterna and contain polyphenols (deposits of “tannin”). Structural polarity, whether symmetric or asymmetric, as well as the occurrence of abundant endoplasmic reticulum and numerous mitochondria are characteristics of the perception cells of most animals and plants.

This is a preview of subscription content, log in to check access.



bovine serum albumin


endoplasmic reticulum






sodium cacodylate buffer


  1. Ades, H.W., Engström, H. (1974) Anatomy of the inner ear. In: Handbook of sensory physiology, vol 5, pt. 1: Auditory systems, pp. 125–158, Keidel, W.D., Neff, W.D., eds. Springer, Berlin Heidelberg New York

  2. Behrens, H.M., Weisenseel, M.H., Sievers, A. (1982) Rapid changes in the pattern of electric current around the root tip of Lepidium sativum L. following gravistimulation. Plant Physiol. 70, 1079–1083

  3. Bendayan, M., Roth, J., Perrelet, A., Orci, L. (1980) Quantitative immunocytochemical localization of pancreatic secretory proteins in subcellular compartments of the rat acinar cell. J. Histochem. Cytochem. 28, 149–160

  4. Bentrup, F.W. (1979) Reception and transduction of electrical and mechanical stimuli. In: Encyclopedia of plant physiology, N.S., vol. 7: Physiology of movements, pp. 42–70, Haupt, W., Feinleib, M.E., eds. Springer, Berlin Heidelberg New York

  5. Campbell, N.A., Thomson, W.W. (1977) Multivacuolate motor cells in Mimosa pudica L. Ann. Bot. 41, 1361–1362

  6. Chafe, S.C., Durzan, D.J. (1973) Tannin inclusions in cell suspension cultures of white spruce. Planta 113, 251–262

  7. Darwin, C. (1875) Insectivorous plants. Murray, London

  8. De Smedt, H., Borghgraef, R., Ceuterick, F., Heremans, K. (1979) Pressure effects on lipid-protein interactions in (Na++K+)-ATPase. Biochim. Biophys. Acta. 556, 479–489

  9. Flock, A. (1971) Sensory transduction in hair cells. In: Handbook of sensory physiology, vol. 1: Principles of receptor physiology, pp. 396–441, Loewenstein, W.R., ed. Springer, Berlin Heidelberg New York

  10. Haberlandt, G. (1906) Sinnesorgane im Pflanzenreich zur Perzeption mechanischer Reize, 2nd edn. Engelmann, Leipzig

  11. Hall, A.C., Ellory, J.C., Klein, R.A. (1982) Pressure and temperature effects on human red cell cation transport. J. Membr. Biol. 68, 47–56

  12. Haslam, E. (1979) Vegetable tannins. In: Recent advances in phytochemistry, vol. 12: Biochemistry of plant phenolics, pp. 475–523, Swain, T., Harborne, J.B., Van Sumere, C.F., eds. Plenum Press, New York London

  13. Hildebrand, E. (1980) Comparative discussion of photoreception in lower and higher organisms. Structural and functional aspects. In: Photoreception and sensory transduction in aneural organisms, pp. 319–340, Lenci, F., Colombetti, G., eds. Plenum Press, New York London

  14. Holtzman, E., Mercurio, A.M. (1980) Membrane circulation in neurons and photoreceptors: some unresolved issues. Int. Rev. Cytol. 67, 1–67

  15. Hudspeth, A.J., Corey, D.P. (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Natl. Acad. Sci. USA 74, 2407–2411

  16. Iijima, T., Sibaoka, T. (1982) Propagation of action potential over the trap-lobes of Aldrovanda vesiculosa. Plant Cell Physiol. 23, 679–688

  17. Khan, N.S., Müller-Arnecke, H., Röskenbleck, H., Trincker, D.E.W. (1979) Functions of different receptor systems in the reptilian labyrinth. Arch. Otorhinolaryngol. 224, 31–35

  18. Lea, H.W. (1976) A muscle contracting substance from a plant's closing fly-trap. Planta 129, 39–41

  19. Lloyd, F.E. (1942) Carnivorous plants. Ronald Press, New York

  20. MacNaughtan, W., MacDonald, A.G. (1982) Effects of pressure and pressure antagonists on the growth and membranebound ATP-ase of Acholeplasma laidlawii B. Comp. Biochem. Physiol. A 72, 405–414

  21. Mueller, W.C., Greenwood, A.D. (1978) The ultrastructure of phenolic-storing cells fixed with caffeine. J. Exp. Bot. 29, 757–764

  22. Nieden, U. zur, Neumann, D., Manteuffel, R., Weber, E. (1982) Electron microscopic immunocytochemical localization of storage proteins in Vicia faba seeds. Eur. J. Cell. Biol. 26, 228–233

  23. Reeve, R.M. (1951) Histochemical tests for polyphenols in plant tissues. Stain Technol. 26, 91–96

  24. Roblin, G. (1979) Mimosa pudica: a model for the study of the excitability in plants. Biol. Rev. 54, 135–153

  25. Samejima, M., Sibaoka, T. (1980) Changes in the extracellular ion concentration in the main pulvinus of Mimosa pudica during rapid movement and recovery. Plant Cell Physiol. 21, 467–479

  26. Satter, R.L. (1979) Leaf movements and tendril curling. In: Encyclopedia of plant physiology, N.S., vol. 7: Physiology of movements, pp. 442–484, Haupt, W., Feinleib, M.E., eds. Springer, Berlin Heidelberg New York

  27. Satter, R.L., Garber, R.C., Khairallah, L., Cheng, Y.-S. (1982) Elemental analysis of freeze-dried thin sections of Samanea motor organs: barriers to ion diffusion through the apoplast. J. Cell Biol. 95, 893–902

  28. Sievers, A. (1968) Zur Epidermisaußenwand der Fühlborsten von Dionaea muscipula. Planta 83, 49–52

  29. Sievers, A., Hensel, W. (1982) The nature of graviperception. In: Plant growth substance 1982, pp. 497–506, Wareing, P.F., ed. Academic Press, London New York

  30. Simons, P.J. (1981) The role of electricity in plant movements. New Phytol 87, 11–37

  31. Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43

  32. Stieve, H. (1979) Charge separation by rhodopsin-containing photosensory membranes. In: Light-induced charge separation in biology and chemistry, pp. 503–523, Gerischer, H., Katz, J.J., eds., Dahlem Konferenzen, Berlin

  33. Thurm, U. (1965) An insect mechanoreceptor. I. Fine structure and adaequate stimulus. II. Receptor potentials. Cold Spring Harbor Symp. Quant. Biol. 30, 75–94

  34. Thurm, U. (1982) Grundzüge der Transduktionsmechanismen in Sinneszellen. In: Biophysik, 2nd edn., pp. 681–696, Hoppe, W., Lohmann, W., Markl, H., Ziegler, H., eds. Springer, Berlin Heidelberg New York

  35. Toriyama, H., Jaffe, M.J. (1972) Migration of calcium and its role in the regulation of seismonasty in the motor cell of Mimosa pudica L. Plant Physiol. 49, 72–81

  36. Toriyama, H., Sato, S. (1968) On the membrane of the tannin vacuole in the Mimosa motor cell. Proc. Jpn. Acad. 44, 528–532

  37. Volkmann, D., Sievers, A. (1979) Graviperception in multicellular organs. In: Enyclopedia of plant physiology, N.S., vol. 7: Physiology of movements, pp. 573–600, Haupt, W., Feinleib, M.E., eds Springer, Berlin Heidelberg New York

  38. Wagner, G., Klein, K. (1978) Differential effect of calcium on chloroplast movement in Mougeotia. Photochem. Photobiol. 27, 137–140

  39. Wagner, G., Klein, K. (1981) Mechanism of chloroplast movement in Mougeotia. Protoplasma 109, 169–185

  40. Wagner, R.C. (1976) The effect of tannic acid on electron images of capillary endothelial cell membranes. J. Ultrastruct. Res. 57, 132–139

  41. Walz, B. (1979) Subcellular calcium localization and ATP-dependent Ca2+-uptake by smooth endoplasmic reticulum in an invertebrate photoreceptor cell. An ultrastructural, cytochemical and X-ray microanalytical study. Eur. J. Cell Biol. 20, 83–91

  42. Walz, B. (1982) Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. I. Intracellular topography as revealed by OsFeCN staining and in situ Ca accumulation. J. Cell Biol. 93, 839–848

  43. Williams, M.E., Mozingo, H.N. (1971) The fine structure of the trigger hair in Venus's flytrap. Am. J. Bot. 58, 532–539

  44. Williams, S.E. (1976) Comparative sensory physiology of the Droseraceae-the evolution of a plant sensory system. Proc. Am. Philos. Soc. 120, 187–204

  45. Williams, S.E., Pickard, B.G. (1974) Connections and barriers between cells of Drosera tentacles in relation to their electrophysiology. Planta 116, 1–16

  46. Williams, S.E., Pickard, B.G. (1980) The role of action potentials in the control of capture movements of Drosera and Dionaea. In: Plant growth substances 1979, pp. 470–480, Skoog, F., ed. Springer, Berlin Heidelberg New York

  47. Zimmermann, U., Beckers, F. (1978) Generation of action potentials in Chara corallina by turgor pressure changes. Planta 138, 173–179

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buchen, B., Hensel, D. & Sievers, A. Polarity in mechanoreceptor cells of trigger hairs of Dionaea muscipula Ellis. Planta 158, 458–468 (1983). https://doi.org/10.1007/BF00397740

Download citation

Key words

  • Cell polarity
  • Dionaea
  • Endoplasmic reticulum
  • Mechanoreceptor cell (plant)
  • Polyphenol
  • Vacuole