Planta

, Volume 162, Issue 3, pp 193–203 | Cite as

Changes in photosynthetic capacity, carboxylation efficiency, and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber

  • J. D. Tenhunen
  • O. L. Lange
  • J. Gebel
  • W. Beyschlag
  • J. A. Weber
Article

Abstract

The carbon-dioxide response of photosynthesis of leaves of Quercus suber, a sclerophyllous species of the European Mediterranean region, was studied as a function of time of day at the end of the summer dry season in the natural habitat. To examine the response experimentally, a “standard” time course for temperature and humidity, which resembled natural conditions, was imposed on the leaves, and the CO2 pressure external to the leaves on subsequent days was varied. The particular temperature and humidity conditions chosen were those which elicited a strong stomatal closure at midday and the simultaneous depression of net CO2 uptake. Midday depression of CO2 uptake is the result of i) a decrease in CO2-saturated photosynthetic capacity after light saturation is reached in the early morning, ii) a decrease in the initial slope of the CO2 response curve (carboxylation efficiency), and iii) a substantial increase in the CO2 compensation point caused by an increase in leaf temperature and a decrease in humidity. As a consequence of the changes in photosynthesis, the internal leaf CO2 pressure remained essentially constant despite stomatal closure. The effects on capacity, slope, and compensation point were reversed by lowering the temperature and increasing the humidity in the afternoon. Constant internal CO2 may aid in minimizing photoinhibition during stomatal closure at midday. The results are discussed in terms of possible temperature, humidity, and hormonal effects on photosynthesis.

Key words

Carboxylation efficiency Compensation point (CO2Photosynthesis (temperature, humidity) Quercus Sclerophyll 

Abbreviations and symbols

CE

carboxylation efficiency

NP

net photosynthesis rate

PAR

photosynthetically active radiation

Pi

leaf internal CO2 partial pressure

ΔW

water vapor mole fraction difference between leaf and air

T

CO2 compensation pressure

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badger, M., Collatz, G.J. (1977) Studies on the kinetic mechanism of ribulose-1,5-biphosphate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie Inst. Washington Yearb. 76, 355–361Google Scholar
  2. Ball, M.C., Farquhar, G.D. (1984a) Photosynthetic and stomatal responses of the grey mangrove, Avicennia marina, to transient salinity conditions. Plant Physiol. 74, 7–11Google Scholar
  3. Ball, M.C., Farquhar, G.D. (1984b) Photosynthetic and stomatal responses to two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiol. 74, 1–6Google Scholar
  4. Ball, J.T., Berry, J.A. (1982) The Ci/Cs ratio: a basis for predicting stomatal control of photosynthesis. Carnegie Inst. Washington Yearb. 81, 88–92Google Scholar
  5. Björkman, O., Badger, M., Armond, P.A. (1978) Thermal acclimation of photosynthesis: effect of growth temperature on photosynthetic characteristics and components of the photosynthetic apparatus in Nerium oleander. Carnegie Inst. Washington Yearb. 77, 262–282Google Scholar
  6. Björkman, O., Powles, S.B., Fork, D.C., Öquist, G. (1981) Interaction between high irradiance and water stress on photosynthetic reactions in Nerium oleander. Carnegie Inst. Washington Yearb. 80, 57–59Google Scholar
  7. Braun-Blanquet, J. (1952) Les groupements végétaux de la France méditerranéenne. Centre National de la Recherche Scientifique. MontpellierGoogle Scholar
  8. Cowan, I.R., Farquhar, G.D. (1977) Stomatal funotion in relation to leaf metabolism and environment. In: Integration of activity in the higher plant, pp. 471–505, Jennings, D.H., ed. Cambridge University Press, CambridgeGoogle Scholar
  9. Cowan, I.R. (1982) Regulation of water use in relation to carbon gain in higher plants. In: Encyclopedia of plant physiology, N.S., vol. 12B: Physiological plant ecology II, pp. 589–613, Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. Dunn, E.L. (1975) Environmental stresses and inherent limitations affecting CO2 exchange in evergreen sclerophylls in mediterranean climates. In: Ecological studies, vol. 12: Perspectives of biophysical ecology, pp. 159–181, Gates, D.M., Schmerl, R.B., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. Eckardt, F.E., Heim, G., Methy, M., Sauvezon, R. (1975) Interception de l'energie rayonnante, échanges gazeux et croissance dans une forêt méditerranéenne à feuillage persistant (Quercetum ilicis). Photosynthetica 9, 145–156Google Scholar
  12. Farquhar, G.D. (1978) Feed-forward responses of stomata to humidity. Aust. J. Plant Physiol. 5, 787–800Google Scholar
  13. Farquhar, G.D., von Caemmerer, S., Berry, J.A. (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90Google Scholar
  14. Farquhar, G.D., von Caemmerer, S. (1982) Modelling of photosynthetic response to environmental conditions. In: Encyclopedia of plant physiology, N.S., vol. 12B: Physiological plant ecology II, pp. 549–587. Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Guttenberg, H., Buhr, H. (1935) Studien über die Assimilation und Atmung mediterraner Macchiapflanzen während der Regen-und Trockenzeit. Planta 24, 163–265Google Scholar
  16. Hall, A.E., Schulze, E.-D., Lange, O.L. (1976) Current perspectives of steady-state stomatal responses to environment. In: Ecological studies, vol. 19: Water and plant life, pp. 169–188, Lange, O.L., Kappen, L., Schulze, E.-D., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. Hellmuth, E. (1971) Eco-physiological studies on plants in arid and semi-arid regions in Western Australia. III. Comparative studies on photosynthesis, respiration and water relations of ten arid zone and two semi-arid zone plants under winter and late summer climatic conditions. J. Ecol. 59, 225–259Google Scholar
  18. Ku, S.B., Edwards, G. (1977) Oxygen inhibition of photosynthesis. II. Kinetic characteristics as affected by temperature. Plant Physiol. 59, 991–999Google Scholar
  19. Lange, O.L., Meyer, A. (1979) Mittäglicher Stomataschluss bei Aprikose (Prunus armeniaca) und Wein (Vitis vinifera) im Freiland trotz guter Bodenwasserversorgung. Flora (Jena) 168, 511–528Google Scholar
  20. Lange, O.L., Schulze, E.-D., Kappen, L., Buschbom, U., Evenari, M. (1975) Photosynthesis of desert plants as influenced by internal and external factors. In: Ecological studies, vol. 12: Perspectives of biophysical ecology, pp. 121–143, Gates, D.M., Schmerl, R.B., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. Lange, O.L., Tenhunen, J.D., Braun, M. (1982) Midday stomatal closure in mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber. I. Comparison of the behavior of various European Mediterranean species. Flora (Jena) 172, 563–579Google Scholar
  22. Mahall, B., Schlesinger, W. (1982) Effects of irradiance on growth, photosynthesis, and water use efficiency of seedlings of the chaparral shrub, Ceanothus megacarpus. Oecologia (Berlin) 54, 291–299Google Scholar
  23. Mooney, H.A., Dunn, E.L. (1970) Convergent evolution in mediterranean sclerophyll shrubs. Evolution 24, 292–303Google Scholar
  24. Mooney, H.A., Björkman, O., Collatz, G.J. (1978) Photosynthetic acclimation to temperature in the desert shrub Larrea divaricata I: carbon dioxide exchange characteristics of intact leaves. Plant Physiol. 61, 406–410Google Scholar
  25. Osmond, C.B., Björkman, O. (1972) Simultaneous measurements of oxygen effects on net photosynthesis and glycolate metabolism in C3 and C4 species of Atriplex. Carnegie Inst. Washington Yearb. 71, 141–148Google Scholar
  26. Osmond, C.B., Björkman, O., Anderson, D.J. (1980) Physiological processes in plant ecology. Toward a synthesis with Atriplex. (Ecological studies, vol. 36). Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Peisker, M., Tichá, I., Apel, P. (1979) Variations in the effect of temperature on oxygen dependence of CO2 gas exchange in wheat leaves. Biochem. Physiol. Pflanz. 174, 391–397Google Scholar
  28. Powles, S.B., Critchley, C. (1980) Effect of light intensity during growth on photoinhibition of intact attached bean leaflets. Plant Physiol. 65, 1181–1187Google Scholar
  29. Raschke, K. (1975) Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L. Planta 125, 243–259Google Scholar
  30. Raschke, K. (1982) Involvement of abscisic acid in the regulation of gas exchange: evidence and inconsistencies. In: Plant growth substances 1982, pp. 581–590, Wareing, P.F., ed. Academic Press, LondonGoogle Scholar
  31. Rouschal, E. (1938) Zur Ökologie der Macchien. I. Der sommerliche Wasserhaushalt der Macchienpflanzen. Jahrb. Wiss. Bot. 87, 436–523Google Scholar
  32. Scholander, P., Hammel, H., Bradstreet, E., Hemmingsen, E. (1965) Sap pressure in vascular plants. Science 148, 339–345Google Scholar
  33. Schulze, E.-D., Hall, A.E. (1982) Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Encyclopedia of plant physiology, N.S., vol. 12B: Physiological plant ecology II, pp. 181–230, Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  34. Schulze, E.-D., Küppers, M. (1979) Short-term and long-term effects of plant water deficits on stomatal response to humidity in Corylus avellana L. Planta 146, 319–326Google Scholar
  35. Schulze, E.-D., Lange, O.L., Evenari, M., Kappen, L., Buschbom, U. (1974) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of the daily time course of stomatal resistance. Oecologia (Berlin) 17, 159–170Google Scholar
  36. Schulze, E.-D., Lange, O.L., Evenari, M., Kappen, L., Buschbom, U. (1975a) The role of air humidity and temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. III. The effect on water use efficiency. Oecologia (Berlin) 19, 303–314Google Scholar
  37. Schulze, E.-D., Lange, O.L., Kappen, L., Evenari, M., Buschbom, U. (1975b) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. II. The significance of leaf water status and internal carbon dioxide concentration. Oecologia (Berlin) 18, 219–233Google Scholar
  38. Sharkey, T., Imai, K., Farquhar, G.D., Cowan, I.R. (1982) A direct confirmation of the standard method of estimating intercellular partial pressure of CO2. Plant Physiol. 69, 657–659Google Scholar
  39. Sharkey, T. (1984) Transpiration-induced changes in the photosynthetic capacity of leaves. Planta 160, 143–150Google Scholar
  40. Stocker, O. (1956) Die Abhängigkeit der Transpiration von den Umweltfaktoren. In: Handbuch der Pflanzenphysiologie, vol. 3, pp. 436–488, Ruhland, W., ed. Springer, Berlin Göttingen HeidelbergGoogle Scholar
  41. Tenhunen, J.D., Lange, O.L., Braun, M. (1981) Midday stomatal closure in mediterranean type sclerophylls under simulated habitat conditions in an environmetal chamber. II. Effect of the complex of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex. Oecologia (Berlin) 50, 5–11Google Scholar
  42. Tenhunen, J.D., Lange, O.L., Braun, M., Meyer, A., Lösch, R., Pereira, J.S. (1980) Midday stomatal closure in Arbutus unedo leaves in a natural macchia and under simulated habitat conditions in an environmental chamber. Oecologia (Berlin) 147, 365–367Google Scholar
  43. Tenhunen, J.D., Lange, O.L., Jahner, D. (1982) The control by atmospheric factors and water stress of midday stomatal closure in Arbutus unedo growing in a natural macchia. Oecologia (Berlin) 55, 165–169Google Scholar
  44. von Caemmerer, S., Farquhar, G.D. (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387Google Scholar
  45. Weis, E. (1981) Reversible heat inactivation of the Calvin cycle: a possible mechanism of temperature regulation of photosynthesis. Planta 151, 33–39Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. D. Tenhunen
    • 1
  • O. L. Lange
    • 1
  • J. Gebel
    • 1
  • W. Beyschlag
    • 1
  • J. A. Weber
    • 2
  1. 1.Lehrstuhl für Botanik II der UniversitätWürzburgGermany
  2. 2.Biological StationUniversity of MichiganAnn ArborUSA

Personalised recommendations