Advertisement

Planta

, Volume 162, Issue 1, pp 62–67 | Cite as

Identification of calmodulin in the green alga Mougeotia and its possible function in chloroplast reorientational movement

  • Gottfried Wagner
  • Petra Valentin
  • Peter Dieter
  • Dieter Marmé
Article

Abstract

A soluble protein was isolated from Mougeotia by chloropromazine-sepharose 4 B affinity chromatography. The protein matches the properties of calmodulin in terms of heat stability, Ca2+-dependent electrophoretic mobility in sodium-dodecyl-sulfate polyacrylamide gels, and its ability to activate cyclic nucleotide phosphodiesterase in a Ca2+-dependent manner. Phytochrome-mediated chloroplast reorientational movement in Mougeotia was inhibited by the calmodulin antagonist trifluoperazine, a hydrophobic compound, or N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a hydrophilic compound; 50% inhibition (IC50) of chloroplast movement is caused by 20–50 μmol l-1 trifluoperazine or 100 μmol l-1 W-7. The Ca2+-calmodulin may act as an intermediate in the chloroplast reorientational response in Mougeotia governed by phytochrome.

Key words

Calcium (chloroplast movement) Calmodulin (chloroplast movement) Chloroplast movement (MougeotiaMougeotia Phytochrome 

Abbreviations

EGTA

ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

SDS

sodium dodecyl sulfate

W-7

N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelstein, R.S. (1982) Calmodulin and the regulation of the actinmyosin interaction in smooth muscle and nonmuscle cells. Cell 30, 349–350Google Scholar
  2. Bourguignon, L.Y.W., Nagpal, M.L., Balazovich, K., Guerriero, V., Means, A.R. (1982) Association of myosin light chain kinase with lymphocyte membrane-cytoskeleton complex. J. Cell Biol. 95, 793–797Google Scholar
  3. Brostrom, M.A., Brostrom, C.O., Breckenridge, B. McL., Wolff, D.J. (1978) Calcium dependent regulation of brain adenylate cyclase. Adv. Cyclic Nucleotide Res. 9, 85–99Google Scholar
  4. Burgess, W.H., Jemiolo, D.K., Kretsinger, R.H. (1980) Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim. Biophys. Acta 623, 257–270Google Scholar
  5. Charbonneau, H., Cormier, M.J. (1979) Purification of plant calmodulin by fluphenazine-sepharose affinity chromatography. Biochem. Biophys. Res. Commun. 90, 1039–1047Google Scholar
  6. Cheung, W.Y. (1971) Cyclic 3′, 5′-nucleotide phosphodiesterase. Evidence for and properties of a protein activator. J. Biol. Chem. 246, 2859–2869Google Scholar
  7. Cheung, W.Y. (1982) Calmodulin: an overview. Fed. Proc. 41, 2253–2257Google Scholar
  8. Cormier, M.J., Charbonneau, H., Jarrett, H.W. (1981) Plant and fungal calmodulin: Ca2+-dependent regulation of plant NAD kinase. Cell Calcium 2, 313–331Google Scholar
  9. Dieter, P., Marmé, D. (1980a) Partial purification of plant NAD kinase by calmodulin-sepharose affinity chromatography. Cell Calcium 1, 279–286Google Scholar
  10. Dieter, P., Marmé, D. (1980b) Calmodulin-activation of plant microsomal Ca2+ uptake. Proc. Natl. Acad. Sci. USA 77, 7311–7314Google Scholar
  11. Endo, M. (1977) Calcium release from the sarcoplasmic reticulum. Physiol. Rev. 57, 71–108Google Scholar
  12. Fabiato, A., Fabiato, F. (1979) Use of chlorotetracycline fluorescence to demonstrate Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Nature (London) 281, 146–148Google Scholar
  13. Grolig, F., Valentin, P., Wagner, G. (1983) Calcium vesicles and calmodulin in the green alga Mougeotia sp. Europ. J. Cell Biol. 2, Suppl. 12Google Scholar
  14. Haupt, W. (1970) Hellrot- und Dunkelrot-Wechselwirkungen bei der Chloroplastendrehung von Mougeotia. Wiss. Z. Ernst Moritz Arndt Univ. Greifswald Math. Naturwiss. Reihe 19, 47–54Google Scholar
  15. Haupt, W. (1982) Light-mediated movement of chloroplasts. Annu. Rev. Plant Physiol. 33, 205–233Google Scholar
  16. Haupt, W., Wagner, G. (1984) Chloroplast movement. In: Membranes and sensory transduction, pp. 331–375, Colombetti, G., Lenci, F., eds. Plenum, New York London Washington D.C. BostonGoogle Scholar
  17. Hidaka, H., Naka, M., Yamaki, T. (1979) Effect of novel specific myosin light chain kinase inhibitors on Ca2+-activated Mg2+-ATPase of chicken gizzard actomyosin. Biochem. Biophys. Res. Commun. 90, 694–699Google Scholar
  18. Hidaka, H., Sasaki, Y., Tanaka, T., Endo, T., Ohno, S., Fujii, Y., Nagata, T. (1981) N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc. Natl. Acad. Sci. USA 78, 4354–4357Google Scholar
  19. Jamieson, G.A., Jr., Vanaman, T.C. (1979) Calcium-dependent affinity chromatography of calmodulin on an immobilized phenothiazine. Biochem. Biophys. Res. Commun. 90, 1048–1056Google Scholar
  20. Kanamori, M., Naka, M., Asano, M., Hidaka, H. (1981) Effects of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and other calmodulin antagonists (calmodulin interacting agents) on calcium-induced contraction of rabbit aortic strips. J. Pharmacol. Exp. Ther. 217, 494–499Google Scholar
  21. Kauss, H., Köhle, H., Jeblick, W. (1983) Proteolytic activation and stimulation by Ca2+ of glucan synthase from soybean cells. FEBS Lett. 158, 84–88Google Scholar
  22. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227, 680–684Google Scholar
  23. Levin, R.M., Weiss, B. (1976) Mechanism by which psychotropic drugs inhibit adenosine cyclic 3′,5′-monophosphate phosphodiesterase of brain. Mol. Pharmacol. 12, 581–589Google Scholar
  24. Luthra, M.G. (1982) Trifluoperazine inhibition of calmodulin-sensitive Ca2+-ATPase and calmodulin-insensitive (Na++ K+)- and Mg2+-ATPase activities of human and rat red blood cells. Biochim. Biophys. Acta. 692, 271–277Google Scholar
  25. Marmé, D., Dieter, P. (1983) The role of Ca2+ and calmodulin in plants. In: Calcium and cell function, vol. 4, pp. 263–311, Cheung, W.Y., ed. Academic Press, New York LondonGoogle Scholar
  26. Maruta, H., Baltes, W., Dieter, P., Marmé, D., Gerisch, G. (1983) Myosin heavy chain kinase inactivated by Ca2+/calmodulin from aggregating cells of Dietyostelium discoideum. EMBO J. 2, 535–542Google Scholar
  27. Matsumura, S., Murakami, N., Yasuda, S., Kumon, A. (1982) Phosphorylation of the bovine brain myosin. Biochem. Biophys. Res. Commun. 108, 1595–1600Google Scholar
  28. Nagasaki, K., Kasai, M. (1981) Calcium-induced calcium release from sarcoplasmic reticulum vesicles. J. Biochem. 90, 749–755Google Scholar
  29. Rossbacher, R., Wagner, G., Pallaghy, Ch.K. (1984) X-ray microanalysis of calcium in fixed and in shock-frozen hydrated green algal cells: Mougeotia, Spirogyra and Zygnema. Nucl. Instr. Meth. Physics Res. 231, 664–666Google Scholar
  30. Stabenau, H. (1978) Wachstum von Mougeotia in der Durchlüftungskultur. Ber., Dtsch. Bot. Ges. 91, 251–255Google Scholar
  31. Van Belle, H. (1981) R 24571: a potent inhibitor of calmodulin-activated enzymes. Cell Calcium 2, 483–494Google Scholar
  32. Wagner, G. (1979) Actomyosin as a basic mechanism of movement in animals and plants. In: Encyclopedia of plant physiology, N.S., vol. 7: Physiology of movement, pp. 114–126, Haupt, W., Feinleib, M.E., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  33. Wagner, G., Rossbacher, R. (1980) X-ray microanalysis and chlorotetracycline staining of calcium vesicles in the green alga Mougeotia. Planta 149, 298–305Google Scholar
  34. Wagner, G., Klein, K. (1981) Mechanism of chloroplast movement in Mougeotia. Protoplasma 109, 169–185Google Scholar
  35. Weiss, B., Levin, R.M. (1978) Mechanism of selectively inhibiting the activation of cyclic nucleotide phosphodiesterase and adenylate cyclase by antipsychotic agents. Adv. Cyclic Nucleotide Res. 9, 285–303Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Gottfried Wagner
    • 1
  • Petra Valentin
    • 1
  • Peter Dieter
    • 2
  • Dieter Marmé
    • 2
  1. 1.Botanisches Institut I der Justus-Liebig-UniversitätGiessenGermany
  2. 2.Institut für Biologie III der UniversitätFreiburg i. Br.Germany

Personalised recommendations